login
A174422
1st Wieferich prime base prime(n).
11
1093, 11, 2, 5, 71, 2, 2, 3, 13, 2, 7, 2, 2, 5
OFFSET
1,1
COMMENTS
Smallest prime p such that p^2 divides prime(n)^(p-1) - 1.
Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p.
See additional comments, links, and cross-refs in A039951.
a(15) = A039951(47) > 4.1*10^13.
FORMULA
a(n) = A039951(prime(n)).
a(n) = 2 if and only if prime(n) == 1 (mod 4). [Jonathan Sondow, Aug 29 2010]
EXAMPLE
a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127.
MATHEMATICA
f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14]
PROG
(PARI) forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jun 27 2014
CROSSREFS
Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1.
Cf. A178871 = 2nd Wieferich prime base prime(n).
Sequence in context: A281001 A271100 A258368 * A255838 A253234 A138698
KEYWORD
hard,more,nonn
AUTHOR
Jonathan Sondow, Mar 19 2010
STATUS
approved