login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174422
1st Wieferich prime base prime(n).
11
1093, 11, 2, 5, 71, 2, 2, 3, 13, 2, 7, 2, 2, 5
OFFSET
1,1
COMMENTS
Smallest prime p such that p^2 divides prime(n)^(p-1) - 1.
Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p.
See additional comments, links, and cross-refs in A039951.
a(15) = A039951(47) > 4.1*10^13.
FORMULA
a(n) = A039951(prime(n)).
a(n) = 2 if and only if prime(n) == 1 (mod 4). [Jonathan Sondow, Aug 29 2010]
EXAMPLE
a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127.
MATHEMATICA
f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14]
PROG
(PARI) forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jun 27 2014
CROSSREFS
Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1.
Cf. A178871 = 2nd Wieferich prime base prime(n).
Sequence in context: A281001 A271100 A258368 * A255838 A253234 A138698
KEYWORD
hard,more,nonn
AUTHOR
Jonathan Sondow, Mar 19 2010
STATUS
approved