login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers congruent to {1,4,5,8} mod 9.
2

%I #15 Sep 08 2022 08:45:51

%S 1,4,5,8,10,13,14,17,19,22,23,26,28,31,32,35,37,40,41,44,46,49,50,53,

%T 55,58,59,62,64,67,68,71,73,76,77,80,82,85,86,89,91,94,95,98,100,103,

%U 104,107,109,112,113,116,118,121,122,125,127,130,131,134,136

%N Numbers congruent to {1,4,5,8} mod 9.

%H G. C. Greubel, <a href="/A174396/b174396.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F a(n) = 3*(n-1-floor((n-1)/4)) + (-1)^floor((n-1)/2).

%F From _Wesley Ivan Hurt_, Oct 17 2015: (Start)

%F G.f.: x*(1+3*x+x^2+3*x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).

%F a(n) = a(n-1)+a(n-4)-a(n-5) for n>5.

%F a(n) = (18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n)/4))/8. (End)

%F E.g.f.: (1/8)*(2*sin(x) - 2*cos(x) + 18*x*exp(x) + 3*exp(-x) - 9*exp(x) + 8). - _G. C. Greubel_, Oct 18 2015

%p seq(3*(n - floor(n/4)) + (-1)^floor(n/2), n=0..100);

%t CoefficientList[Series[(1 + 3 x + x^2 + 3 x^3 + x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x] (* _Wesley Ivan Hurt_, Oct 17 2015 *)

%t RecurrenceTable[{a[1] == 1, a[2] == 4, a[3] == 5, a[4] == 8, a[5] == 10 , a[n+5] == a[n+4] + a[n+1] - a[n] }, a, {n, 1, 100}] (* _G. C. Greubel_, Oct 18 2015 *)

%o (Magma) [(18*n-9+3*(-1)^n-2*(-1)^((2*n+1-(-1)^n) div 4))/8 : n in [1..100]]; // _Wesley Ivan Hurt_, Oct 17 2015

%K nonn,easy

%O 1,2

%A _Gary Detlefs_, Mar 18 2010

%E Formula corrected by _Gary Detlefs_, Mar 19 2010