Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 21 2015 11:16:53
%S 53,57,153,249,279,329,333,339,347,381,399,431,471,489,641,647,711,
%T 821,851,923,959,987,1169,1239,1313,1383,1479,1547,1563,1589,1611,
%U 1653,1677,1709,1773,1863,1887,1973,2031,2067
%N Natural numbers n such that the concatenations n//1331 and 1331//n are prime numbers.
%C See comments and references for A173836, A174213.
%C Intersection of A173579 and A174213. - _Michel Marcus_, Aug 27 2013
%D Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004
%H Harvey P. Dale, <a href="/A174355/b174355.txt">Table of n, a(n) for n = 1..1000</a>
%e 531331 = prime(43928), 133153 = prime(12427), 53 is smallest term of sequence.
%t Select[Range[2100],AllTrue[{#*10^4+1331,1331*10^IntegerLength[#]+#},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Aug 21 2015 *)
%o (PARI) isok(n) = isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ _Michel Marcus_, Aug 27 2013
%Y Cf. A168327, A168417, A173836, A174213, A174260.
%K base,nonn
%O 1,1
%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 17 2010