Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 25 2016 16:53:12
%S 0,16,256,2592,24576,240000,2488320,27659520,330301440,4232632320,
%T 58060800000,850068172800,13243436236800,218892235161600,
%U 3827475696844800,70614415872000000,1371195958099968000
%N Upper bound in enumerating what majority decisions are possible with possible abstaining.
%C a(n) from last equations, Larson, p.22.
%D J. A. N. d. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. L'imprimerie royale, Paris, 1785.
%H P. Erdos and L. Moser, <a href="https://www.renyi.hu/~p_erdos/1964-22.pdf">On the representation of directed graphs as unions of orderings</a>, Magyar Tud. Akad. Mat. Kutats Int. Kvzl., 9:125-132, 1964.
%H Paul Larson, Nick Matteo, Saharon Shelah, <a href="http://arxiv.org/abs/1003.2756">What majority decisions are possible with possible abstaining</a>, arXiv:1003.2756 [math.CO], 2010.
%H S. Shelah, <a href="http://dx.doi.org/10.1016/j.disc.2008.05.010">What majority decisions are possible</a>, Discrete Mathematics, 309(8): 2349-2364, 2009.
%F a(n) = 16*(n^3)*(n!) = 16*A000578(n)*A000142(n).
%F a(n) = 16*A091363(n). - _Michel Marcus_, Jun 25 2015
%e a(4) = 16*(4^3)*(4!) = 24576.
%t Table[16n^3 n!,{n,0,20}] (* _Harvey P. Dale_, Feb 25 2016 *)
%o (PARI) a(n) = 16*n^3*n! \\ _Michel Marcus_, Jun 25 2015
%Y Cf. A000142, A000578, A091363.
%K easy,nonn
%O 0,2
%A _Jonathan Vos Post_, Mar 16 2010