login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174023
The number of primes between prime(n)# and prime(n)# + prime(n)^2.
1
2, 3, 6, 9, 17, 18, 20, 28, 25, 30, 41, 46, 41, 53, 56, 73, 62, 66, 81, 93, 85, 84, 89, 97, 101, 127, 121, 122, 119, 128, 150, 141, 144, 152, 150, 143, 174, 203, 197, 195, 196, 194, 213, 213, 218, 223, 230, 235, 249, 258, 256, 244, 264, 262, 274, 275, 278, 295
OFFSET
1,1
COMMENTS
Here prime(n)# denotes the product of the first n primes, A002110(n). This sequence provides numerical evidence that the smallest prime p greater than prime(n)#+1 is a prime distance from prime(n)#; that is, p-prime(n)# is a prime number, as shown in the sequence of Fortunate numbers, A005235. For p-prime(n)# to be a composite number, p would have to be greater than prime(n)#+prime(n)^2, which would imply that a(n)=0.
FORMULA
Limit_{N->infinity} (Sum_{n=1..N} a(n)) / (Sum_{n=1..N} prime(n)) = 1. - Alain Rocchelli, Nov 03 2022
EXAMPLE
For 3, the second prime, 3# is 6 and 3#+3^2 is 15. There are 3 primes between 6 and 15: 7, 11, and 13. Hence a(2)=3.
MATHEMATICA
Table[p=Prime[n]; prod=prod*p; Length[Select[Range[prod+1, prod+p^2-1], PrimeQ]], {n, 50}]
CROSSREFS
Sequence in context: A114702 A026768 A068604 * A014868 A029463 A018721
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 12 2010
STATUS
approved