login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers k > 1 for which A020639(2*k-1) < A020639(2*k-3).
4

%I #11 Oct 24 2024 03:14:54

%S 5,8,11,13,14,17,20,23,25,26,28,29,32,35,38,41,43,44,46,47,50,53,56,

%T 58,59,62,65,67,68,71,73,74,77,80,83,85,86,88,89,92,95,98,101,103,104,

%U 107,110,113,116,118,119,122,125,127,128,130,131,133,134,137,140,143,146,148

%N Integers k > 1 for which A020639(2*k-1) < A020639(2*k-3).

%C Every number m == 2 (mod 3), m > 2, is in the sequence (see A016789).

%p A020639 := proc(n) if n = 1 then 1; else min(op(numtheory[factorset](n)) ) ; end if; end proc:

%p isA173977 := proc(n) A020639(2*n-1) < A020639(2*n-3) ; end proc:

%p for n from 2 to 400 do if isA173977(n) then printf("%d,",n) ; end if; end do: # _R. J. Mathar_, Mar 25 2010

%t lpf[n_] := lpf[n] = FactorInteger[n][[1, 1]]; Select[Range[2, 150], lpf[2*#-1] < lpf[2*#-3] &] (* _Amiram Eldar_, Oct 24 2024 *)

%Y Cf. A016789, A020639, A104275.

%K nonn,easy

%O 1,1

%A _Vladimir Shevelev_, Mar 04 2010

%E More terms from _R. J. Mathar_, Mar 25 2010