login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.
16

%I #40 Sep 08 2022 08:45:51

%S 0,16,416,34096,5794624,1680121936,82501802464,2065646660464,

%T 1739147340740224,210617970218777104,288533264855755545376,

%U 485294472126860897387056,485518650207447822251456

%N a(n) = numerator of (Zeta(2, 1/4) - Zeta(2, n+1/4)), where Zeta is the Hurwitz Zeta function.

%C For A173947/16 see A173949.

%C a(n+1)/A173948(n+1) =: r(n) = (Zeta(2, 1/4) - Zeta(2, n + 5/4)), the partial sum Sum_{k=0..n} 1/(k + 1/4)^2, n >= 0. The limit is Zeta(2, 1/4) = A282823 = 16*A222183. - _Wolfdieter Lang_, Nov 14 2017

%H G. C. Greubel, <a href="/A173947/b173947.txt">Table of n, a(n) for n = 0..250</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HurwitzZetaFunction.html">Hurwitz Zeta Function</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TrigammaFunction.html">Trigamma Function</a>

%F a(n) = numerator of 8*Catalan + Pi^2 - Zeta(2, (4 n + 1)/4), with the Catalan constant given in A006752.

%F a(n) = numerator(r(n)) with r(n) = Zeta(2, 1/4) - Zeta(2, n + 1/4), with the Hurwitz Zeta function (see the name). With Zeta(2, 1/4) = Psi(1, 1/4) = 8*Catalan + Pi^2 this is the preceding formula, where Psi(1, z) is the Trigamma function. - _Wolfdieter Lang_, Nov 14 2017

%p r := n -> Psi(1, 1/4) - Zeta(0, 2, n+1/4):

%p seq(numer(simplify(r(n))), n=0..13); # _Peter Luschny_, Nov 14 2017

%t Table[Numerator[FunctionExpand[8*Catalan + Pi^2 - Zeta[2, (4*n + 1)/4]]], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 14 2017 *)

%t Numerator[Table[128*n*Sum[(1 + 4*k + 2*n) / ((1 + 4*k)^2*(1 + 4*k + 4*n)^2), {k, 0, Infinity}], {n, 0, 20}]] (* _Vaclav Kotesovec_, Nov 14 2017 *)

%t Numerator[Table[16*Sum[1/(4*k + 1)^2, {k, 0, n - 1} ], {n, 0, 20}]] (* _Vaclav Kotesovec_, Nov 14 2017 *)

%o (PARI) for(n=0,20, print1(numerator(sum(k=0,n-1, 1/(4*k+1)^2)), ", ")) \\ _G. C. Greubel_, Aug 22 2018

%o (Magma) [1] cat [Numerator((&+[1/(4*k+1)^2: k in [0..n-1]])): n in [1..20]]; // _G. C. Greubel_, Aug 22 2018

%Y Cf. A006752, A120268, A173945, A173948 (denominators), A173949.

%K frac,nonn,easy

%O 0,2

%A _Artur Jasinski_, Mar 03 2010

%E Name simplified and offset set to 0 by _Peter Luschny_, Nov 14 2017