Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:45:51
%S 1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,10,12,15,19,24,30,37,45,56,69,85,105,
%T 130,161,199,246,304,376,465,575,711,879,1086,1343,1660,2052,2537,
%U 3137,3879,4796,5929,7330,9062,11203,13850,17123,21170,26173,32359,40006
%N Expansion of 1/(1 - x - x^8 - x^15 + x^16).
%C Limiting ratio is 1.2303914344072246.
%C The polynomial is the 10th Salem on Mossinghoff's list.
%H G. C. Greubel, <a href="/A173925/b173925.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1).
%F a(n) = a(n-1) + a(n-8) + a(n-15) - a(n-16). - _Harvey P. Dale_, Apr 02 2012
%p seq(coeff(series(1/(1-x-x^8-x^15+x^16), x, n+1), x, n), n = 0..60); # _G. C. Greubel_, Dec 15 2019
%t CoefficientList[Series[1/(1-x-x^8-x^15+x^16), {x, 0, 60}] ,x] (* _Harvey P. Dale_, Apr 02 2012 *)
%o (PARI) my(x='x+O('x^60)); Vec(1/(1-x-x^8-x^15+x^16)) \\ _G. C. Greubel_, Nov 03 2018
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1-x-x^8-x^15+x^16))); // _G. C. Greubel_, Nov 03 2018
%o (Sage)
%o def A173925_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/(1-x-x^8-x^15+x^16) ).list()
%o A173925_list(60) # _G. C. Greubel_, Dec 15 2019
%Y Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.
%K nonn,easy
%O 0,9
%A _Roger L. Bagula_, Nov 26 2010