login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that both (2^k+1)^2-2 and (2^k-1)^2-2 are prime.
0

%I #29 Oct 24 2024 14:55:05

%S 2,3,12,15,18,21,27

%N Numbers k such that both (2^k+1)^2-2 and (2^k-1)^2-2 are prime.

%C a(8) > 9394. - _Max Z. Scialabba_, Jan 21 2024

%C a(8) > 695631 using A091513 and A091515. - _Michael S. Branicky_, Oct 24 2024

%F A091513 INTERSECT A091515. - _R. J. Mathar_, Jul 06 2010

%t Select[Range[3000], PrimeQ[((2^# + 1)^2 - 2)]&&PrimeQ[((2^# - 1)^2 - 2)] &] (* _Vincenzo Librandi_, Aug 21 2014 *)

%o (Magma) [n: n in [1..400] | IsPrime((2^n-1)^2-2) and IsPrime((2^n+1)^2-2)]

%Y Cf. A091513, A091515.

%K nonn,hard,more

%O 1,1

%A _Vincenzo Librandi_, Mar 08 2010

%E Definition clarified by _Jon E. Schoenfield_, Jun 18 2010