login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A158772(n-1)/21.
6

%I #31 Jun 16 2019 16:14:58

%S 1,1,1,2,2,2,4,4,4,8,8,8,16,16,16,32,32,32,64,64,64,128,128,128,256,

%T 256,256,512,512,512,1024,1024,1024,2048,2048,2048,4096,4096,4096,

%U 8192,8192,8192,16384,16384,16384,32768,32768,32768,65536,65536,65536,131072,131072

%N a(n) = A158772(n-1)/21.

%C Triplicated A000079. Powers of 2 repeated 3 times.

%C a(n) is the number of ways of partitioning the set of the first n distinct positive Fibonacci numbers into two subsets whose sums differ at most by 1. a(6) = 2: 1,2,5,8/3,13; 1,2,13/3,5,8. - _Alois P. Heinz_, Jun 16 2019

%H G. C. Greubel, <a href="/A173862/b173862.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2)

%F G.f. x*(1 + x + x^2)/(1 - 2*x^3). - _R. J. Mathar_, Nov 28 2011

%t Flatten[Table[c=2^n;{c,c,c},{n,0,20}]] (* _Harvey P. Dale_, Jul 20 2012 *)

%t CoefficientList[Series[x*(1 + x + x^2)/(1 - 2*x^3), {x,0,50}], x] (* _G. C. Greubel_, Apr 30 2017 *)

%o (PARI) a(n)=2^((n-1)\3) \\ _Charles R Greathouse IV_, Oct 03 2016

%Y Cf. A000045, A000079, A016116, A200672.

%K nonn,easy

%O 1,4

%A _Paul Curtz_, Nov 26 2010

%E More terms from _Harvey P. Dale_, Jul 20 2012