Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 09 2024 12:48:32
%S 7,87,887,8887,88887,888887,8888887,88888887,888888887,8888888887,
%T 88888888887,888888888887,8888888888887,88888888888887,
%U 888888888888887,8888888888888887,88888888888888887,888888888888888887,8888888888888888887,88888888888888888887,888888888888888888887
%N a(n) = (8*10^n - 17)/9 for n > 0.
%H Vincenzo Librandi, <a href="/A173812/b173812.txt">Table of n, a(n) for n = 1..100</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F a(n) = 10*a(n-1) + 17 with n > 0, a(0)=-1.
%F From _Vincenzo Librandi_, Jul 05 2012: (Start)
%F a(n) = 11*a(n-1) - 10*a(n-2) for n > 2.
%F G.f.: x*(7+10*x)/((1-x)*(1-10*x)). (End)
%F E.g.f.: 1 + exp(x)*(8*exp(9*x) - 17)/9. - _Elmo R. Oliveira_, Sep 09 2024
%t CoefficientList[Series[(7+10*x)/((1-x)*(1-10*x)),{x,0,30}],x] (* _Vincenzo Librandi_, Jul 05 2012 *)
%t Table[FromDigits[PadLeft[{7},n,8]],{n,20}] (* _Harvey P. Dale_, Jun 22 2013 *)
%o (Magma) [(8*10^n-17)/9: n in [1..20]]; // _Vincenzo Librandi_, Jul 05 2012
%Y Cf. A093171.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Feb 25 2010