Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jul 14 2024 10:13:51
%S 8,120,3680,144760,6427008,306745824,15364514880,796663553400,
%T 42395640372800,2302336805317120,127078484504270208,
%U 7108177964254013920,402042028998035350400,22954860061516225396800
%N The arithmetic mean of (21*k + 8)*binomial(2*k,k)^3 (k=0..n-1).
%C On Feb 10 2010, _Zhi-Wei Sun_ introduced the sequence and conjectured that each term a(n) is an integer divisible by 4*binomial(2*n,n). On Feb 11 2011, _Kasper Andersen_ confirmed this conjecture by noting that the sequence b(n) = a(n)/(4*binomial(2*n,n)), for n > 0, coincides with A112029. It was proved that for every prime p and positive integer a we have a(p^a) == 8 + 16*p^3*B_(p-3) (mod p^4), where B_0, B_1, B_2, ... are Bernoulli numbers. Given a prime p, it has been conjectured that Sum_{k=0..(p-1)/2} (21*k + 8)*binomial(2*k,k)^3 == 8*p + (-1)^((p-1)/2)*32*p^3*E_(p-3) (mod p^4) if p > 3 (where E_0, E_1, E_2, ... are Euler numbers), and that Sum_{k=0..floor(2p^a/3)} (21*k + 8)*binomial(2*k,k)^3 == 8*p^a (mod p^(a + 5 + (-1)^p)) if a is a positive integer with p^a == 1 (mod 3). He also observed that b(n) = a(n)/(4*binomial(2*n,n)) is odd if and only if n is a power of two.
%H G. C. Greubel, <a href="/A173774/b173774.txt">Table of n, a(n) for n = 1..500</a>
%H Kasper Andersen, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1002&L=nmbrthry&T=0&P=1395">Re: A somewhat surprising conjecture</a>
%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a39bf149.1002">A somewhat surprising conjecture</a>
%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;4d3d48b9.1002">Re: A somewhat surprising conjecture</a>
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/0911.5665">Open conjectures on congruences</a>, preprint, arXiv:0911.5665 [math.NT], 2009-2011.
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1001.4453">Super congruences and Euler numbers</a>, preprint, arXiv:1001.4453 [math.NT], 2010-2011.
%F a(n) = (1/n)*Sum_{k=0..n-1} (21*k + 8)*binomial(2*k,k)^3.
%F (n+1)*a(n+1) = n*a(n) + 8*(21*n + 8)*binomial(2*n-1, n)^3, n > 0, with a(1) = 8.
%F a(n) ~ 2^(6*n) / (3 * (Pi*n)^(3/2)). - _Vaclav Kotesovec_, Jan 24 2019
%F a(n) = (1/n)*Sum_{j=0..n-1} (21*j + 8)*(j+1)^3*Catalan(j)^3. - _G. C. Greubel_, Jul 06 2021
%e For n=2 we have a(2)=120 since (8*binomial(0,0)^3 + (21+8)*binomial(2,1)^3)/2 = 120.
%t a[n_]:= Sum[(21*k+8)*Binomial[2*k,k]^3, {k,0,n-1}]/n; Table[a[n], {n, 25}]
%o (Magma) [(&+[(21*j+8)*(j+1)^3*Catalan(j)^2: j in [0..n-1]])/n: n in [1..30]]; // _G. C. Greubel_, Jul 06 2021
%o (Sage) [(1/n)*sum((21*j+8)*binomial(2*j,j)^3 for j in (0..n-1)) for n in (1..30)] # _G. C. Greubel_, Jul 06 2021
%Y Cf. A000984, A112029, A122045.
%K nonn
%O 1,1
%A _Zhi-Wei Sun_, Feb 24 2010