The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173774 The arithmetic mean of (21*k + 8)*binomial(2*k,k)^3 (k=0..n-1). 13

%I #23 Sep 08 2022 08:45:50

%S 8,120,3680,144760,6427008,306745824,15364514880,796663553400,

%T 42395640372800,2302336805317120,127078484504270208,

%U 7108177964254013920,402042028998035350400,22954860061516225396800

%N The arithmetic mean of (21*k + 8)*binomial(2*k,k)^3 (k=0..n-1).

%C On Feb 10 2010, _Zhi-Wei Sun_ introduced the sequence and conjectured that each term a(n) is an integer divisible by 4*binomial(2*n,n). On Feb 11 2011, _Kasper Andersen_ confirmed this conjecture by noting that the sequence b(n) = a(n)/(4*binomial(2*n,n)), for n > 0, coincides with A112029. It was proved that for every prime p and positive integer a we have a(p^a) == 8 + 1*6*p^3*B_(p-3) (mod p^4), where B_0, B_1, B_2, ... are Bernoulli numbers. Given a prime p, it has been conjectured that Sum_{k=0..(p-1)/2} (21*k + 8)*binomial(2*k,k)^3 == 8*p + (-1)^((p-1)/2)*32*p^3*E_(p-3) (mod p^4) if p > 3 (where E_0, E_1, E_2, ... are Euler numbers), and that Sum_{k=0..floor(2p^a/3)} (21*k + 8)*binomial(2*k,k)^3 == 8*p^a (mod p^(a + 5 + (-1)^p)) if a is a positive integer with p^a == 1 (mod 3). He also observed that b(n) = a(n)/(4*binomial(2*n,n)) is odd if and only if n is a power of two.

%H G. C. Greubel, <a href="/A173774/b173774.txt">Table of n, a(n) for n = 1..500</a>

%H Kasper Andersen, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind1002&amp;L=nmbrthry&amp;T=0&amp;P=1395">Re: A somewhat surprising conjecture</a>

%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a39bf149.1002">A somewhat surprising conjecture</a>

%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;4d3d48b9.1002">Re: A somewhat surprising conjecture</a>

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/0911.5665">Open conjectures on congruences</a>, preprint, arXiv:0911.5665 [math.NT], 2009-2011.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1001.4453">Super congruences and Euler numbers</a>, preprint, arXiv:1001.4453 [math.NT], 2010-2011.

%F a(n) = (1/n)*Sum_{k=0..n-1} (21*k + 8)*binomial(2*k,k)^3.

%F (n+1)*a(n+1) = n*a(n) + 8*(21*n + 8)*binomial(2*n-1, n)^3, n > 0, with a(1) = 8.

%F a(n) ~ 2^(6*n) / (3 * (Pi*n)^(3/2)). - _Vaclav Kotesovec_, Jan 24 2019

%F a(n) = (1/n)*Sum_{j=0..n-1} (21*j + 8)*(j+1)^3*Catalan(j)^3. - _G. C. Greubel_, Jul 06 2021

%e For n=2 we have a(2)=120 since (8*binomial(0,0)^3 + (21+8)*binomial(2,1)^3)/2 = 120.

%t a[n_]:= Sum[(21*k+8)*Binomial[2*k,k]^3, {k,0,n-1}]/n; Table[a[n], {n, 25}]

%o (Magma) [(&+[(21*j+8)*(j+1)^3*Catalan(j)^2: j in [0..n-1]])/n: n in [1..30]]; // _G. C. Greubel_, Jul 06 2021

%o (Sage) [(1/n)*sum((21*j+8)*binomial(2*j,j)^3 for j in (0..n-1)) for n in (1..30)] # _G. C. Greubel_, Jul 06 2021

%Y Cf. A000984, A112029, A122045.

%K nonn

%O 1,1

%A _Zhi-Wei Sun_, Feb 24 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 13:58 EDT 2024. Contains 373445 sequences. (Running on oeis4.)