login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of symmetry classes of 3 X 3 magilatin squares with positive values and magic sum n.
8

%I #16 Jun 29 2023 09:27:23

%S 1,1,2,4,7,10,20,22,35,50,63,78,116,131,170,215,260,306,395,440,537,

%T 640,737,841,1025,1125,1310,1507,1700,1898,2213,2404,2729,3071,3391,

%U 3725,4242,4566,5075,5612,6127,6656,7418,7931,8703,9499,10254,11038,12140

%N Number of symmetry classes of 3 X 3 magilatin squares with positive values and magic sum n.

%C A magilatin square has equal row and column sums and no number repeated in any row or column. The symmetries are row and column permutations and diagonal flip.

%C a(n) is given by a quasipolynomial of degree 4 and period 840.

%H T. Zaslavsky, <a href="/A173730/b173730.txt">Table of n, a(n) for n = 6..10000</a>.

%H Matthias Beck and Thomas Zaslavsky, <a href="http://arxiv.org/abs/math/0506315">An enumerative geometry for magic and magilatin labellings</a>, arXiv:math/0506315 [math.CO], 2005.

%H Matthias Beck and Thomas Zaslavsky, <a href="https://doi.org/10.1007/s00026-006-0296-4">An enumerative geometry for magic and magilatin labellings</a>, Annals of Combinatorics, 10 (2006), no. 4, pages 395-413. MR 2007m:05010. Zbl 1116.05071.

%H Matthias Beck and Thomas Zaslavsky, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Zaslavsky/sls.html">Six Little Squares and How their Numbers Grow</a>, Journal of Integer Sequences, 13 (2010), Article 10.6.2.

%H <a href="/index/Rec#order_34">Index entries for linear recurrences with constant coefficients</a>, signature (-2, -3, -2, 0, 3, 6, 8, 9, 7, 3, -4, -10, -15, -16, -14, -8, 0, 8, 14, 16, 15, 10, 4, -3, -7, -9, -8, -6, -3, 0, 2, 3, 2, 1).

%F G.f.: x^3/(1-x^3) * ( x^3/((x-1)*(x^2-1)) - 3*x^5/((x-1)*(x^2-1)^2) - 2*x^5/((x-1)*(x^4-1)) - 2*x^5/((x^3-1)*(x^2-1)) - x^5/(x^5-1) + x^7/((x-1)*(x^2-1)^3) + 2*x^7/((x-1)*(x^2-1)*(x^4-1)) + x^7/((x-1)*(x^6-1)) + x^7/((x^2-1)^2*(x^3-1)) + x^7/((x^2-1)*(x^5-1)) - x^7/((x^3-1)*(x^4-1)) + x^7/(x^7-1) + x^9/((x-1)*(x^4-1)^2) + 2*x^9/((x^2-1)*(x^3-1)*(x^4-1)) + 2*x^9/((x^3-1)*(x^6-1)) + x^9/((x^4-1)*(x^5-1)) + x^11/((x^3-1)*(x^4-1)^2) + x^11/((x^3-1)*(x^8-1)) + x^11/((x^5-1)*(x^6-1)) + x^13/((x^5-1)*(x^8-1)) ).

%t LinearRecurrence[{-2, -3, -2, 0, 3, 6, 8, 9, 7, 3, -4, -10, -15, -16, -14, -8, 0, 8, 14, 16, 15, 10, 4, -3, -7, -9, -8, -6, -3, 0, 2, 3, 2, 1}, {1, 1, 2, 4, 7, 10, 20, 22, 35, 50, 63, 78, 116, 131, 170, 215, 260, 306, 395, 440, 537, 640, 737, 841, 1025, 1125, 1310, 1507, 1700, 1898, 2213, 2404, 2729, 3071}, 50] (* _Jean-François Alcover_, Nov 17 2018 *)

%Y Cf. A173549 (all squares), A173548 (counted by upper bound), A173729 (symmetry types by upper bound).

%K nonn

%O 6,3

%A _Thomas Zaslavsky_, Mar 04 2010, Apr 24 2010