OFFSET
1,2
COMMENTS
Lambda(n) is the Carmichael lambda function (A002322).
For k>3 in the sequence, k and k+1 are both composite. - Robert Israel, Oct 31 2016
Numbers k such that lambda(k) = lambda(k+1) = lambda(k+2) are 16274635445, 42107181364, and no more below 1.6*10^11. - Amiram Eldar, May 30 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..372 from Robert Israel)
EXAMPLE
104 is in the sequence because lambda(104) = lambda(105) = 12.
MAPLE
with(numtheory):for n from 1 to 50000 do:if lambda(n)=lambda(n+1)then printf(`%d,
`, n):else fi:od:
MATHEMATICA
seq[kmax_] := Module[{s = {}, c1 = 0, c2}, Do[c2 = CarmichaelLambda[k]; If[c1 == c2, AppendTo[s, k - 1]]; c1 = c2, {k, 1, kmax}]; s]; seq[10^5] (* Amiram Eldar, Feb 22 2023 *)
SequencePosition[CarmichaelLambda[Range[64000]], {x_, x_}][[;; , 1]] (* Harvey P. Dale, Feb 22 2023 *)
PROG
(PARI) lista(kmax) = {my(c1 = 0, c2); for(k = 1, kmax, c2 = lcm(znstar(k)[2]); if(c1 == c2, print1(k-1, ", ")); c1 = c2); } \\ Amiram Eldar, Feb 22 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 25 2010
STATUS
approved