login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173695
Numbers k such that lambda(k) = lambda(k+1).
2
1, 3, 15, 90, 104, 495, 665, 702, 740, 836, 975, 1628, 2625, 2834, 2849, 3800, 7384, 12402, 12560, 13050, 15250, 16470, 22935, 25928, 26274, 29574, 29890, 32864, 39524, 41451, 44286, 47519, 48326, 48704, 48872, 49050, 50850, 53130, 54816, 56790, 56864, 57584, 63456
OFFSET
1,2
COMMENTS
Lambda(n) is the Carmichael lambda function (A002322).
For k>3 in the sequence, k and k+1 are both composite. - Robert Israel, Oct 31 2016
Numbers k such that lambda(k) = lambda(k+1) = lambda(k+2) are 16274635445, 42107181364, and no more below 1.6*10^11. - Amiram Eldar, May 30 2023
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..372 from Robert Israel)
EXAMPLE
104 is in the sequence because lambda(104) = lambda(105) = 12.
MAPLE
with(numtheory):for n from 1 to 50000 do:if lambda(n)=lambda(n+1)then printf(`%d,
`, n):else fi:od:
MATHEMATICA
seq[kmax_] := Module[{s = {}, c1 = 0, c2}, Do[c2 = CarmichaelLambda[k]; If[c1 == c2, AppendTo[s, k - 1]]; c1 = c2, {k, 1, kmax}]; s]; seq[10^5] (* Amiram Eldar, Feb 22 2023 *)
SequencePosition[CarmichaelLambda[Range[64000]], {x_, x_}][[;; , 1]] (* Harvey P. Dale, Feb 22 2023 *)
PROG
(PARI) lista(kmax) = {my(c1 = 0, c2); for(k = 1, kmax, c2 = lcm(znstar(k)[2]); if(c1 == c2, print1(k-1, ", ")); c1 = c2); } \\ Amiram Eldar, Feb 22 2023
CROSSREFS
Cf. A002322.
Sequence in context: A368974 A074550 A205576 * A255688 A370186 A361843
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 25 2010
STATUS
approved