login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let d_1, d_2, d_3, ..., d_tau(n) be the divisors of n; a(n) = number of permutations p of d_1, d_2, d_3, ..., d_tau(n) such that p_(i+1)/p_i is a prime or 1/prime for i = 1,2,...,tau(n)-1 and p_1 <= p_tau(n).
4

%I #49 Dec 23 2024 14:53:42

%S 1,1,1,1,1,4,1,1,1,4,1,8,1,4,4,1,1,8,1,8,4,4,1,14,1,4,1,8,1,72,1,1,4,

%T 4,4,20,1,4,4,14,1,72,1,8,8,4,1,22,1,8,4,8,1,14,4,14,4,4,1,584,1,4,8,

%U 1,4,72,1,8,4,72,1,62,1,4,8,8,4,72,1,22,1,4

%N Let d_1, d_2, d_3, ..., d_tau(n) be the divisors of n; a(n) = number of permutations p of d_1, d_2, d_3, ..., d_tau(n) such that p_(i+1)/p_i is a prime or 1/prime for i = 1,2,...,tau(n)-1 and p_1 <= p_tau(n).

%C Variant of A179926 in which the permutation of the divisors may start with any divisor but the first term may not be larger than the last term.

%C From _Andrew Howroyd_, Oct 26 2019: (Start)

%C Equivalently, the number of undirected Hamiltonian paths in a graph with vertices corresponding to the divisors of n and edges connecting divisors that differ by a prime.

%C a(n) depends only on the prime signature of n. See A295786. (End)

%H Andrew Howroyd, <a href="/A173675/b173675.txt">Table of n, a(n) for n = 1..2048</a>

%H V. Shevelev, <a href="http://arxiv.org/abs/1105.3154">Combinatorial minors of matrix functions and their applications</a>, arXiv:1105.3154 [math.CO], 2011-2014.

%H V. Shevelev, <a href="https://www.math.bgu.ac.il/~shevelev/comb_meth2014.pdf">Combinatorial minors of matrix functions and their applications</a>, Zesz. Nauk. PS., Mat. Stosow., Zeszyt 4, pp. 5-16. (2014).

%H Robert G. Wilson v, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2010-August/005453.html">Re: A combinatorial problem</a>, SeqFan (Aug 02 2010)

%F From _Andrew Howroyd_, Oct 26 2019: (Start)

%F a(p^e) = 1 for prime p.

%F a(A002110(n)) = A284673(n).

%F a(n) = A295786(A101296(n)). (End)

%e a(1) = 1: [1].

%e a(2) = 1: [1,2].

%e a(6) = 4: [1,2,6,3], [1,3,6,2], [2,1,3,6], [3,1,2,6].

%e a(12) = 8: [1,2,4,12,6,3], [1,3,6,2,4,12], [1,3,6,12,4,2], [2,1,3,6,12,4], [3,1,2,4,12,6], [3,1,2,6,12,4], [4,2,1,3,6,12], [6,3,1,2,4,12].

%p with(numtheory):

%p q:= (i, j)-> is(i/j, integer) and isprime(i/j):

%p b:= proc(s, l) option remember; `if`(s={}, 1, add(

%p `if`(q(l, j) or q(j, l), b(s minus{j}, j), 0), j=s))

%p end:

%p a:= proc(n) option remember; ((s-> add(b(s minus {j}, j),

%p j=s))(divisors(n)))/`if`(n>1, 2, 1)

%p end:

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 26 2017

%t b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[PrimeQ[l/j] || PrimeQ[j/l], b[s ~Complement~ {j}, j], 0], {j, s}]];

%t a[n_] := a[n] = Function[s, Sum[b[s ~Complement~ {j}, j], {j, s}]][ Divisors[n]] / If[n > 1, 2, 1];

%t Array[a, 100] (* _Jean-François Alcover_, Nov 28 2017, after _Alois P. Heinz_ *)

%Y Cf. A000005, A000040, A002110, A101296, A179926, A284673, A295786.

%Y See A295557 for another version.

%K nonn

%O 1,6

%A _N. J. A. Sloane_, Nov 24 2010

%E _Alois P. Heinz_ corrected and clarified the definition and provided more terms. - Nov 07 2014