Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 16 2022 10:24:59
%S 2,3,5,11,29,97,347,1429,6229,29873,160869,895680,5448207,34885543,
%T 228759799,1568298164,11417382972,87698582661,684947826800,
%U 5606539592683,47241542317190,403631914492643,3587558929043911,32684217334320604,308342289648017960,3036819365023555974
%N a(n) = ceiling(sqrt(4*P_n)), where P_n is product of first n primes
%H Robert Israel, <a href="/A173631/b173631.txt">Table of n, a(n) for n = 0..632</a>
%F a(n) = ceiling(sqrt(4*A002110(n))). - _Michel Marcus_, Feb 22 2016
%p P:= 1: p:= 1: A[0]:= 2:
%p for n from 1 to 30 do
%p p:= nextprime(p);
%p P:= P*p;
%p A[n]:= ceil(sqrt(4*P));
%p od:
%p seq(A[i],i=0..30); # _Robert Israel_, Mar 18 2020
%t p=4; Join[{Sqrt[p]}, Table[p=p*Prime[n]; Ceiling[Sqrt[p]], {n, 25}]]
%o (PARI) a(n) = sqrtint(4*prod(k=1, n, prime(k)) - 1) + 1; \\ _Michel Marcus_, Feb 22 2016; corrected Jun 16 2022
%Y Cf. A000040, A002110.
%K nonn
%O 0,1
%A _Vladimir Shevelev_, Nov 23 2010
%E Extended by _T. D. Noe_, Nov 23 2010