login
a(n) = a(n-1) + a(n-2) - [a(n-2)/4] - [a(n-4)/2] - [a(n-6)/4].
0

%I #9 May 03 2024 14:03:00

%S 1,1,2,3,5,8,11,16,23,31,43,57,77,101,133,174,226,293,378,486,624,800,

%T 1023,1307,1669,2129,2714,3458,4405,5609,7139,9085,11560,14706,18706,

%U 23792,30258,38478,48929,62216,79108,100583,127886,162597,206726,262829,334154,424833,540115,686677,873006

%N a(n) = a(n-1) + a(n-2) - [a(n-2)/4] - [a(n-4)/2] - [a(n-6)/4].

%C The limiting ratio a(n+1)/a(n) at the 500th iteration is:1.2713284253471857

%F a(n)=a(n-1)+a(n-2)-Floor[a(n-2)/4]-Floor[a(n-4)/2]-Floor[a(n-6)/4]

%t f[-4] = 0; f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;

%t f[n_] := f[n] = f[n - 1] + f[n - 2] - Floor[f[n - 2]/4] - Floor[

%t f[n - 4]/2] - Floor[f[n - 6]/4]

%t Table[f[n], {n, 0, 50}]

%Y Cf. A173564.

%K nonn

%O 0,3

%A _Roger L. Bagula_, Nov 23 2010