login
Decimal expansion of constant related to Goat Problem, Donkey Problem, Tenenbaum and A173201.
1

%I #9 Sep 19 2017 03:33:29

%S 9,4,4,4,4,3,3,7,8,2,0,5,5,7,9,0,4,6,4,9,2,2,0,8,6,0,4,2,1,2,9,7,8,4,

%T 9,9,8,2,1,1,1,6,0,1,8,7,7,1,6,3,4,3,8,5,8,4,8,2,2,4,4,2,1,9,5,3,1,3,

%U 5,9,3,3,1,8,3,7,0,2,2,9,8,3,5,2,7,8,7,7,6,8,5,9,2,3,0,7,2,2,2,6,6,0,8,3,7

%N Decimal expansion of constant related to Goat Problem, Donkey Problem, Tenenbaum and A173201.

%H M. Fraser, <a href="http://www.jstor.org/stable/2690163">A tale of two goats</a>, Math. Mag., 55 (1982), 221-227. Has extensive bibliography. [From _N. J. A. Sloane_, Jul 12 2011]

%H Gerd Lamprecht, <a href="http://www.gerdlamprecht.de/Roemisch_JAVA.htm#ZZZZZ0003">Iterationsrechner Beispiel 3</a>

%F x = sqrt(1-A072112^2) = sqrt(1-(1-A133731^2/2)^2); A075838 =(x+PI/2-asin(x))/(A133731^2); with A072112=1-A133731^2/2; A133731=cos(A173201/2)*2;

%e 0.9528478646... = A075838 =(0.9444433782055...+PI/2-asin(0.9444433782055...))/(A133731^2);

%K cons,nonn

%O 0,1

%A Gerd Lamprecht (gerdlamprecht(AT)googlemail.com), Feb 22 2010