%I #3 Mar 30 2012 18:40:51
%S 2,5,10,17,30,49,72,103,140,183,230,283,344,423,506,607,714,823,936,
%T 1067,1206,1363,1530,1729,1940,2191,2460,2741,3024,3317,3624,3937,
%U 4274,4657,5058,5479,5910,6349,6798,7255,7746,8255,8776,9299,9868,10469
%N Partial sums of A118371.
%C Partial sums of fastest growing sequence of primes satisfying Goldbach's conjecture. The subsequence of primes in this partial sum begins: 2, 5, 17, 103, 283, 607, 823, 2741, 4657, 5479, 13177, 16369. The subsequence of primes in this partial sum which are also in the underlying sequence begins: 2, 5, 283, 5479.
%F a(n) = SUM[i=1..n] A118371(i).
%e a(56) = 2 + 3 + 5 + 7 + 13 + 19 + 23 + 31 + 37 + 43 + 47 + 53 + 61 + 79 + 83 + 101 + 107 + 109 + 113 + 131 + 139 + 157 + 167 + 199 + 211 + 251 + 269 + 281 + 283 + 293 + 307 + 313 + 337 + 383 + 401 + 421 + 431 + 439 + 449 + 457 + 491 + 509 + 521 + 523 + 569 + 601 + 643 + 673 + 691 + 701 + 769 + 773 + 811 + 839 + 863 + 881.
%Y Cf. A118371.
%K easy,nonn
%O 1,1
%A _Jonathan Vos Post_, Feb 20 2010
%E One of the 3937 replaced by 3624 - _R. J. Mathar_, Mar 07 2010