login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n*(n+1)/2 into parts not greater than n.
11

%I #35 Sep 07 2016 11:08:50

%S 1,1,2,7,23,84,331,1367,5812,25331,112804,511045,2348042,10919414,

%T 51313463,243332340,1163105227,5598774334,27119990519,132107355553,

%U 646793104859,3181256110699,15712610146876,77903855239751,387609232487489,1934788962992123

%N Number of partitions of n*(n+1)/2 into parts not greater than n.

%C a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - _Alois P. Heinz_, Jan 25 2012

%H Alois P. Heinz and Vaclav Kotesovec, <a href="/A173519/b173519.txt">Table of n, a(n) for n = 0..720</a> (terms 0..200 from Alois P. Heinz)

%F a(n) = A026820(A000217(n),n).

%F a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - _Vaclav Kotesovec_, Sep 07 2014

%t Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* _Alonso del Arte_, Aug 12 2011 *)

%t Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* _Vaclav Kotesovec_, May 25 2015 *)

%o (PARI)

%o a(n)=

%o {

%o local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf);

%o gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */

%o return( polcoeff( truncate(gf), tr ) );

%o } /* _Joerg Arndt_, Aug 14 2011 */

%Y Cf. A066655, A097356, A258234.

%K nonn

%O 0,3

%A _Reinhard Zumkeller_, Feb 20 2010

%E More terms from _D. S. McNeil_, Aug 12 2011