%I #4 May 27 2021 09:24:02
%S 2,9,61,2194,2592601,3374954133663,5695183504482491594510172,
%T 16217557574922386301420519886707289378131172220652,
%U 131504586847961235687181874578063117114329409897566535831366955410641808739121788386036154689297602
%N Partial sums of A005588.
%C Partial sums of number of free binary rooted trees of height n. The subsequence of primes in this partial sum begins: 2, 61, no more through a(12).
%F a(n) = Sum_{i=1..n} A005588(i).
%e a(9) = 2 + 7 + 52 + 2133 + 2590407 + 3374951541062 + 5695183504479116640376509 + 16217557574922386301420514191523784895639577710480 + 131504586847961235687181874578063117114329409897550318273792033024340388219235081096658023517076950.
%Y Cf. A005588, A002658, A006894.
%K nonn
%O 1,1
%A _Jonathan Vos Post_, Feb 19 2010