login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173495
a(n) = Lucas(n) - floor(Lucas(n)/2).
1
1, 1, 2, 2, 4, 6, 9, 15, 24, 38, 62, 100, 161, 261, 422, 682, 1104, 1786, 2889, 4675, 7564, 12238, 19802, 32040, 51841, 83881, 135722, 219602, 355324, 574926, 930249, 1505175, 2435424, 3940598, 6376022, 10316620, 16692641, 27009261, 43701902, 70711162
OFFSET
0,3
FORMULA
G.f.: (1-2*x^3)/[(1-x)*(1+x+x^2)*(1-x-x^2)].
a(n) = ceiling(Lucas(n)/2).
a(3n) = A001077(n). - Christopher Hohl, Aug 19 2021
MAPLE
a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>,
<-1|-1|1|1|1>>^n. <<1, 1, 2, 2, 4>>)[1, 1]:
seq(a(n), n=0..50); # Alois P. Heinz, Feb 17 2013
MATHEMATICA
l[0] = 2; l[1] = 1; l[n_] := l[n] = l[n - 1] + l[n - 2]; Table[l[n] - Floor[l[n]/2], {n, 0, 30}]
Table[Ceiling[LucasL[n]/2], {n, 0, 39}] (* Jean-François Alcover, Feb 17 2014 *)
CoefficientList[Series[(1 - 2 x^3)/((1 - x) (1 + x + x^2) (1 - x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 19 2014 *)
PROG
(Magma) [Ceiling(Lucas(n)/2): n in [0..40]]; // Vincenzo Librandi, Feb 19 2014
CROSSREFS
Sequence in context: A234961 A018061 A304778 * A376195 A166289 A071058
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 23 2010
STATUS
approved