login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173394 Positions of powers of 2 in A084680. 1
1, 3, 9, 11, 17, 33, 51, 73, 99, 101, 137, 153, 187, 219, 257, 303, 353, 411, 449, 561, 641, 657, 771, 803, 909, 1059, 1111, 1233, 1241, 1347, 1409, 1507, 1683, 1717, 1923, 2313, 2329, 2409, 2827, 3177, 3333, 3723, 3883, 4041, 4227, 4369, 4521, 4939 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The n where the decimal expansion of 1/n has a period length which is a power of 2.

REFERENCES

J. W. L. Glaisher, On circulating decimals, Proc. Camb. Phil. Soc., 3 (1878), 185-206.

D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-12.

LINKS

Table of n, a(n) for n=1..48.

Eric Weisstein's World of Mathematics,Decimal Expansion

FORMULA

{n: A084680(n) in A000079}.

EXAMPLE

Period of 1/3 = 1. Period of 1/9 = 2. Period of 1/73 = 8. Period of 1/353 = 32.

MAPLE

A084680 := proc(n) if gcd(n, 10) <> 1 then 0 ; elif n = 1 then 1 ; else numtheory[order](10, n) ; end if; end proc:

isA000079 := proc(n) if n = 1 then true; elif n >=1 then numtheory[factorset](n) = {2} ; else false; end if; end proc:

for n from 1 to 5000 do if isA000079(A084680(n)) then printf("%d, ", n) ; end if; end do: # R. J. Mathar, Mar 10 2010

CROSSREFS

Cf. A002329.

Sequence in context: A111324 A107073 A227245 * A111211 A144181 A004626

Adjacent sequences:  A173391 A173392 A173393 * A173395 A173396 A173397

KEYWORD

nonn

AUTHOR

Michel Lagneau, Feb 17 2010

EXTENSIONS

Missing numbers -those where A084680(n)>1000- inserted - R. J. Mathar, Mar 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 12:23 EDT 2021. Contains 348041 sequences. (Running on oeis4.)