login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-2) + a(n-3) - floor(a(n-4)/2) - floor(a(n-6)/2).
1

%I #21 Dec 18 2022 02:33:15

%S 1,1,1,2,2,3,4,4,6,6,7,9,8,11,11,12,15,14,18,18,20,23,22,27,26,29,32,

%T 31,37,36,39,44,41,50,48,51,59,52,66,61,65,76,64,85,75,81,96,76,108,

%U 90,99

%N a(n) = a(n-2) + a(n-3) - floor(a(n-4)/2) - floor(a(n-6)/2).

%C The first negative term is a(82) = -69.

%H Harvey P. Dale, <a href="/A173332/b173332.txt">Table of n, a(n) for n = 0..1000</a>

%t f[-4] = 0; f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;

%t f[n_] := f[n] = f[n - 2] + f[n - 3] - Floor[f[n - 4]/2] - Floor[f[n - 6]/2]

%t Table[f[n], {n, 0, 50}]

%t nxt[{a_,b_,c_,d_,e_,f_}]:= {b,c,d,e,f,e+d-Floor[c/2]-Floor[a/2]}; NestList[ nxt,{1,1,1,2,2,3},50][[All,1]] (* _Harvey P. Dale_, Sep 18 2020 *)

%K sign,easy

%O 0,4

%A _Roger L. Bagula_, Nov 22 2010