OFFSET
1,2
REFERENCES
H. Davenport, The Higher Arithmetic (Cambridge University Press 7th ed., 1999), ch. V.3, p.122.
FORMULA
a(n) = (2k)! / 2(k!)^2 mod p, where p = 4*k+1 = A002144(n).
EXAMPLE
n=7: A002144(7) = 53 = 4*13 + 1,
a(7) = 26! / (2*(13!)^2) mod 53 = 403291461126605635584000000/77551576087265280000 mod 53 = 5200300 mod 53 = 46,
A002972(7) = MIN(46, 53 - 46) = 7;
n=8: A002144(8) = 61 = 4*15 + 1,
a(8) = 30! / (2*(15!)^2) mod 61 = 265252859812191058636308480000000/3420024505448398848000000 mod 61 = 77558760 mod 61 = 5,
A002972(8) = MIN(5, 61 - 5) = 5.
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 16 2010
STATUS
approved