Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Apr 15 2024 03:26:26
%S 1,1,1,2,2,3,3,4,5,5,6,7,8,8,10,10,11,12,12,14,13,15,15,16,17,17,19,
%T 19,21,21,23,24,25,27,27,30,30,32,33,34,36,36,38,38,40,40,41,42,42,44,
%U 43,45,45,46,47,47,49,49,51,51,53,54,55,57,57,60,60,62,63
%N a(n) = a(n-2) + a(n-3) - floor(a(n-3)/2) - floor(a(n-6)/2).
%C This sequence is interesting because in the graph of a(n+1)/a(n) there are four modes all approaching one at different rates.
%H Bo Gyu Jeong, <a href="/A173329/b173329.txt">Table of n, a(n) for n = 0..2010</a>
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,1,-1).
%F a(n+30) = a(n)+30 for n>=12.
%F From _Chai Wah Wu_, Apr 14 2024: (Start)
%F a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-6) + a(n-8) + a(n-9) - a(n-10) for n > 21.
%F G.f.: (x^21 - x^20 + x^18 - x^16 + x^14 - x^13 + x^11 - x^9 + x^7 - x^2 + 1)/(x^10 - x^9 - x^8 + x^6 + x^4 - x^2 - x + 1). (End)
%t f[-4] = 0; f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;
%t f[n_] := f[n] = f[n - 2] + f[n - 3] - Floor[f[n - 3]/2] - Floor[f[n - 6]/2]
%t Table[f[n], {n, 0, 50}]
%K nonn
%O 0,4
%A _Roger L. Bagula_, Nov 22 2010
%E More terms from _Bo Gyu Jeong_, Jun 15 2012