login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that phi(tau(k)) = tau(sopf(k)).
1

%I #17 Jul 12 2019 01:30:43

%S 4,6,8,9,10,12,18,20,22,25,27,30,32,34,44,49,50,58,60,68,70,82,90,102,

%T 104,105,116,118,121,125,135,140,142,150,152,164,169,174,182,189,190,

%U 195,202,204,208,214,231,236,238,242,243,246,248,252,274,284,285,286

%N Numbers k such that phi(tau(k)) = tau(sopf(k)).

%C Sopf = A008472 is the sum of the distinct primes dividing n, tau= A000005 is the number of divisors, phi = A000010 is Euler's totient.

%H Harvey P. Dale, <a href="/A173328/b173328.txt">Table of n, a(n) for n = 1..1000</a>

%H P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-19.1.75">Divisors of numbers and their continuations in the theory of partitions</a>, Proc. London Math. Soc., 19 (1919), 75-113.

%H W. Sierpinski, <a href="http://matwbn.icm.edu.pl/ksiazki/mon/mon42/mon4204.pdf"> Number Of Divisors And Their Sum</a>, Elementary theory of numbers, Warszawa, 1964.

%F {n : A163109(n)= tau(A008472(n))}.

%e 4 is in the sequence because tau(4) = 3, phi(3)=2, sopf(4)=2 and tau(2) = 2;

%e 6 is in the sequence because tau(6) = 4, phi(6)=2, sopf(6)=5 and tau(5) = 2.

%p isA173328 := proc(n)

%p numtheory[phi](numtheory[tau](n)) = numtheory[tau](A008472(n)) ;

%p end proc:

%p for n from 1 to 300 do

%p if isA173328(n) then

%p printf("%d,",n);

%p end if;

%p end do: # _R. J. Mathar_, Nov 07 2011

%t Select[Range[2,300],EulerPhi[DivisorSigma[0,#]]==DivisorSigma[0, Total[ FactorInteger[#][[All,1]]]]&] (* _Harvey P. Dale_, May 30 2017 *)

%Y Cf. A008472 (sopfr).

%K nonn

%O 1,1

%A _Michel Lagneau_, Feb 16 2010