login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A001615.
10

%I #58 Sep 08 2022 08:45:50

%S 1,4,8,14,20,32,40,52,64,82,94,118,132,156,180,204,222,258,278,314,

%T 346,382,406,454,484,526,562,610,640,712,744,792,840,894,942,1014,

%U 1052,1112,1168,1240,1282,1378,1422,1494,1566,1638,1686,1782,1838,1928,2000,2084

%N Partial sums of A001615.

%C a(n) is even for n >= 2. - _Jianing Song_, Nov 24 2018

%D W. Hürlimann, Dedekind's arithmetic function and primitive four squares counting functions, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88; http://scientificadvances.co.in; DOI: http://dx.doi.org/10.18642/jantaa_7100121599

%H Enrique Pérez Herrero, <a href="/A173290/b173290.txt">Table of n, a(n) for n = 1..5000</a>

%H W. Hürlimann, <a href="https://www.researchgate.net/publication/295616503_Dedekind&#39;s_arithmetic_function_and_primitive_four_squares_counting_functions">Dedekind's arithmetic function and primitive four squares counting functions</a>, Journal of Algebra, Number Theory: Advances and Applications, Volume 14, Number 2, 2015, Pages 73-88.

%F a(n) = Sum_{i=1..n} A001615(i) = Sum_{i=1..n} (n * Product_{p|n, p prime} (1 + 1/p)).

%F a(n) = 15*n^2/(2*Pi^2) + O(n*log(n)). - _Enrique Pérez Herrero_, Jan 14 2012

%F a(n) = Sum_{i=1..n} A063659(i) * floor(n/i). - _Enrique Pérez Herrero_, Feb 23 2013

%F a(n) = (1/2)*Sum_{k=1..n} mu(k)^2 * floor(n/k) * floor(1+n/k), where mu(k) is the Moebius function. - _Daniel Suteu_, Nov 19 2018

%F a(n) = (Sum_{k=1..floor(sqrt(n))} k*(k+1) * (A013928(1+floor(n/k)) - A013928(1+floor(n/(k+1)))) + Sum_{k=1..floor(n/(1+floor(sqrt(n))))} mu(k)^2 * floor(n/k) * floor(1+n/k))/2. - _Daniel Suteu_, Nov 23 2018

%p with(numtheory): a:=n->(1/2)*add(mobius(k)^2*floor(n/k)*floor(1+n/k),k=1..n); seq(a(n),n=1..55); # _Muniru A Asiru_, Nov 24 2018

%t Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k], {k,1,n}], {n,60}] (* _G. C. Greubel_, Nov 23 2018 *)

%t psi[n_] := If[n==1, 1, n*Times@@(1 + 1/FactorInteger[n][[;;,1]])]; Accumulate[Array[psi, 50]] (* _Amiram Eldar_, Nov 23 2018 *)

%o (PARI)

%o S(n) = sum(k=1, sqrtint(n), moebius(k)*(n\(k*k))); \\ see: A013928

%o a(n) = sum(k=1, sqrtint(n), k*(k+1) * (S(n\k) - S(n\(k+1))))/2 + sum(k=1, n\(1+sqrtint(n)), moebius(k)^2*(n\k)*(1+n\k))/2; \\ _Daniel Suteu_, Nov 23 2018

%o (Sage)

%o def A173290(n) :

%o return add(k*mul(1+1/p for p in prime_divisors(k)) for k in (1..n))

%o [A173290(n) for n in (1..52)] # _Peter Luschny_, Jun 10 2012

%o (Magma) [(&+[MoebiusMu(k)^2*Floor(n/k)*Floor(1 + n/k): k in [1..n]])/2: n in [1..60]]; // _G. C. Greubel_, Nov 23 2018

%Y Cf. A001615, A063659.

%Y Cf. A082020.

%Y Cf. A175836 (partial products of the Dedekind psi function).

%K nonn

%O 1,2

%A _Jonathan Vos Post_, Feb 15 2010