Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 06 2020 12:29:24
%S 1,3,8,16,32,56,96,152,240,360,536,768,1096,1520,2096,2824,3792,5000,
%T 6568,8496,10960,13960,17728,22264,27896,34624,42872,52640,64504,
%U 78464,95248,114856,138256,165448,197640,234832,278592,328920,387744,455064
%N A(x) satisfies A005408(x) = A(x)/A(x^2), A005408 = odd numbers.
%C (1 + 3x + 5x^2 + 7x^3 + ...) = (1 + 3x + 8x^2 + 16x^3 + ...) / (1 + 3x^2 + 8x^4 + 16x^6 + ...).
%H Alois P. Heinz, <a href="/A173283/b173283.txt">Table of n, a(n) for n = 0..10000</a>
%F Given M = triangle A152204, odd numbers shifted down twice in every column > 0.
%F A173283 = lim_{n->inf} M^n, the left-shifted vector considered as a sequence.
%F a(n) = Sum_{t=0..n/2} (2*n - 4*t + 1)*a(t). - _R. J. Mathar_, Apr 01 2010
%p A173283 := proc(n) option remember; if n = 0 then 1; else add(procname(l)*(2*n-4*l+1),l=0..n/2) ; end if; end proc: seq(A173283(n),n=0..60) ; # _R. J. Mathar_, Apr 01 2010
%t m = 40;
%t A[_] = 1;
%t Do[A[x_] = A[x^2] (1 + x)/(1 - x)^2 + O[x]^m // Normal, {m}];
%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Feb 06 2020 *)
%Y Cf. A005408, A152204.
%K nonn
%O 0,2
%A _Gary W. Adamson_, Feb 14 2010
%E More terms from _R. J. Mathar_, Apr 01 2010