Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 17:40:17
%S 1,1,2,1,6,1,24,2,1,120,6,1,720,24,2,1,5040,120,6,1,40320,720,24,2,1,
%T 362880,5040,120,6,1,3628800,40320,720,24,2,1,39916800,362880,5040,
%U 120,6,1,479001600,3628800,40320,720,24,2,1,6227020800,39916800,362880,5040,120,6,1,87178291200
%N Irregular triangle read by rows: M(n,k) = (n-2*k)!, k=0..floor(n/2).
%C In the limit as j-> infinity, the power M^j approaches the limit described in A173280.
%C Row sums: sum_{k=0..n/2} M(n,k) = A136580(n).
%e Triangle starts in row n=0 as:
%e 1;
%e 1;
%e 2, 1;
%e 6, 1;
%e 24, 2, 1;
%e 120, 6, 1;
%e 720, 24, 2, 1;
%e 5040, 120, 6, 1;
%e 40320, 720, 24, 2, 1;
%e 362880, 5040, 120, 6, 1;
%e 3628800, 40320, 720, 24, 2, 1;
%e 39916800, 362880, 5040, 120, 6, 1;
%e 479001600, 3628800, 40320, 720, 24, 2, 1;
%e ...
%p A173279 := proc(n,k) factorial(n-2*k) ; end proc: seq(seq(A173279(n,k),k=0..floor(n/2)),n=0..20) ; # _R. J. Mathar_, Feb 22 2010
%Y Cf. A000142, A136580, A173280
%K nonn,tabf
%O 0,3
%A _Gary W. Adamson_, Feb 14 2010
%E keyword tabl replaced by tabf, _R. J. Mathar_, Feb 22 2010