login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = binomial(n + 5, 5)*9^n.
5

%I #13 Aug 28 2022 04:23:17

%S 1,54,1701,40824,826686,14880348,245525742,3788111448,55401129927,

%T 775615818978,10470813556203,137072468372112,1747673971744428,

%U 21778706417122872,266011342666286508,3192136111995438096,37707107822946112509,439176902879019428046

%N a(n) = binomial(n + 5, 5)*9^n.

%C Number of n-permutations (n>=5) of 10 objects p, r, q, u, v, w, z, x, y, z with repetition allowed, containing exactly five (5) u's.

%H Vincenzo Librandi, <a href="/A173188/b173188.txt">Table of n, a(n) for n = 0..400</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (54,-1215,14580,-98415,354294,-531441).

%F a(n) = C(n + 5, 5)*9^n.

%F From _Amiram Eldar_, Aug 28 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 184320*log(9/8) - 86835/4.

%F Sum_{n>=0} (-1)^n/a(n) = 450000*log(10/9) - 189645/4. (End)

%t Table[Binomial[n + 5, 5]*9^n, {n, 0, 20}]

%o (Magma) [Binomial(n+5, 5)*9^n: n in [0..20]]; // _Vincenzo Librandi_, Oct 13 2011

%Y Cf. A081139, A173000, A173187.

%K nonn,easy

%O 0,2

%A _Zerinvary Lajos_, Feb 12 2010