login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.
1

%I #14 Apr 03 2023 10:36:11

%S 2,5,8,14,17,20,29,32,35,38,47,50,53,62,68,74,77,80,89,95,98,104,110,

%T 113,119,134,137,140,152,155,164,167,173,182,185,188,197,203,209,215,

%U 218,227,230,242,248,260,269,272,284,287,299

%N Numbers k such that 2k+3 is a prime of the form 3*A034936(m) + 4.

%C With Bachet-Bézout theorem implicating Gauss Lemma and the Fundamental Theorem of Arithmetic,

%C for k > 1, k = 2*a + 3*b (a and b integers)

%C first type

%C A001477 = (2*A080425) + (3*A008611)

%C A000040 = (2*A039701) + (3*A157966)

%C A024893 Numbers k such that 3*k + 2 is prime

%C A034936 Numbers k such that 3*k + 4 is prime

%C OR

%C second type

%C A001477 = (2*A028242) + (3*A059841)

%C A000040 = (2*A067076) + (3*1)

%C A067076 Numbers k such that 2*k + 3 is prime

%C k a b OR a b

%C -- - - - -

%C 0 0 0 0 0

%C 1 - - - -

%C 2 1 0 1 0

%C 3 0 1 0 1

%C 4 2 0 2 0

%C 5 1 1 1 1

%C 6 0 2 3 0

%C 7 2 1 2 1

%C 8 1 2 4 0

%C 9 0 3 3 1

%C 10 2 2 5 0

%C 11 1 3 4 1

%C 12 0 4 6 0

%C 13 2 3 5 1

%C 14 1 4 7 0

%C 15 0 5 6 1

%C ...

%C 2* 2 + 3 OR 3* 1 + 4 = 7;

%C 2* 5 + 3 OR 3* 3 + 4 = 13;

%C 2* 8 + 3 OR 3* 5 + 4 = 19;

%C 2*14 + 3 OR 3* 9 + 4 = 31;

%C 2*17 + 3 OR 3*11 + 4 = 37;

%C 2*20 + 3 OR 3*13 + 4 = 43;

%C 2*29 + 3 OR 3*19 + 4 = 61;

%C 2*32 + 3 OR 3*21 + 4 = 67;

%C 2*35 + 3 OR 3*23 + 4 = 73.

%C A034936 Numbers k such that 3k+4 is prime.

%C A002476 Primes of the form 6k+1.

%C A024899 Nonnegative integers k such that 6k+1 is prime.

%C 2, 5, 8, 14, 17, 20, ... = (3*(4*A024899 - A034936) - 5)/2.

%H Prime FAQ Chris K.Caldwell, <a href="https://t5k.org/notes/faq/six.html">Most rediscovered result about primes numbers</a>

%t Select[Range[300],PrimeQ[2#+3]&&Divisible[2#-1,3]&] (* _Harvey P. Dale_, Aug 25 2016 *)

%Y Cf. A067076, A034936, A002476, A024899.

%K nonn,uned

%O 1,1

%A _Eric Desbiaux_, Feb 11 2010

%E More terms from _Harvey P. Dale_, Aug 25 2016