login
Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3, read by rows.
6

%I #8 Apr 28 2021 01:59:59

%S 1,1,1,1,5,1,1,6,6,1,1,7,12,7,1,1,8,28,28,8,1,1,9,36,56,36,9,1,1,10,

%T 45,119,119,45,10,1,1,11,55,164,238,164,55,11,1,1,12,66,219,483,483,

%U 219,66,12,1,1,13,78,285,702,966,702,285,78,13,1

%N Triangle T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3, read by rows.

%H G. C. Greubel, <a href="/A173119/b173119.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k, q) = q*[n=2] + Sum_{j=0..5} q^j*binomial(n-2*j, k-j)*[n>2*j] with T(n,0) = T(n,n) = 1 for q = 3.

%F Sum_{k=0..n} T(n, k, q) = [n=0] + q*[n=2] + Sum_{j=0..5} q^j*2^(n-2*j)*[n > 2*j] for q = 3. - _G. C. Greubel_, Apr 27 2021

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 6, 6, 1;

%e 1, 7, 12, 7, 1;

%e 1, 8, 28, 28, 8, 1;

%e 1, 9, 36, 56, 36, 9, 1;

%e 1, 10, 45, 119, 119, 45, 10, 1;

%e 1, 11, 55, 164, 238, 164, 55, 11, 1;

%e 1, 12, 66, 219, 483, 483, 219, 66, 12, 1;

%e 1, 13, 78, 285, 702, 966, 702, 285, 78, 13, 1;

%t T[n_, k_, q_]:= If[k==0 || k==n, 1, q*Boole[n==2] + Sum[q^j*Binomial[n-2*j, k-j]*Boole[n>2*j], {j,0,5}]];

%t Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 27 2021 *)

%o (Sage)

%o @CachedFunction

%o def T(n,k,q): return 1 if (k==0 or k==n) else q*bool(n==2) + sum( q^j*binomial(n-2*j, k-j)*bool(n>2*j) for j in (0..5) )

%o flatten([[T(n,k,3) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Apr 27 2021

%Y Cf. A007318 (q=0), A072405 (q= -1), A173117 (q=1), A173118 (q=2), this sequence (q=3), A173120 (q= -4), A173122.

%K nonn,tabl,easy,less

%O 0,5

%A _Roger L. Bagula_, Feb 10 2010

%E Edited by _G. C. Greubel_, Apr 27 2021