login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = -(sin(2*n*arccos(sqrt(3))))^2.
20

%I #14 Mar 02 2022 13:24:48

%S 0,24,2400,235224,23049600,2258625624,221322261600,21687323011224,

%T 2125136332838400,208241673295152024,20405558846592060000,

%U 1999536525292726728024,195934173919840627286400

%N a(n) = -(sin(2*n*arccos(sqrt(3))))^2.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1)

%F a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3), n > 2.

%F Binet formula: a(n) = -1/2 + (1/4)(49 + 20*sqrt(6))^n + (1/4)(49 - 20*sqrt(6))^n.

%F a(n) = 24*A108741(n).

%F From _R. J. Mathar_, Aug 23 2012: (Start)

%F G.f.: -24*x*(1+x) / ( (x-1)*(x^2-98*x+1) ).

%F a(n) = A132596(2n). (End)

%t Table[ -Round[N[Sin[2 n ArcCos[Sqrt[3]]]^2, 100]], {n, 0, 20}]

%t OR

%t Table[Round[N[ -1/2 + (1/4) (49 + 20 Sqrt[6])^n + (1/4) (49 - 20 Sqrt[6])^n]], {n, 0, 6}]

%t OR

%t Clear[a]; a[n_] := a[n] = 99 a[n - 1] - 99 a[n - 2] + a[n - 3]; a[0] = 0; a[1] = 24; a[2] = 2400; Table[a[n], {n, 0, 10}]

%o (PARI) a(n)=([0,1,0;0,0,1;1,-99,99]^n*[0;24;2400])[1,1] \\ _Charles R Greathouse IV_, Jun 11 2015

%Y Cf. A001079, A108741, A132592, A146311, A146312, A146313.

%K nonn,easy

%O 0,2

%A _Artur Jasinski_, Feb 10 2010