Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:50
%S 82,142,214,254,326,358,386,478,538,542,566,674,758,802,974,1198,1366,
%T 1466,1594,1754,1762,1942,2302,2342,2374,2582,2654,2746,2762,2818,
%U 2998,3106,3134,3418,3494,3518,3554,3566,3646,3734,3778,3862,4138,4178,4258
%N Semiprimes k such that k^2 - 7 and k^2 + 7 are also semiprime.
%H Harvey P. Dale, <a href="/A173087/b173087.txt">Table of n, a(n) for n = 1..500</a>
%e 82 = 2*41, 82^2 - 7 = 6717 = 3*2239 and 82^2 + 7 = 6731 = 53*127 are all semiprime, hence 82 is a term.
%t f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-7;b=n^2+7;If[f[a]&&f[b],AppendTo[lst,n]]],{n,8!}];lst
%t Select[Range[4500],Thread[PrimeOmega[{#,#^2-7,#^2+7}]]=={2,2,2}&] (* _Harvey P. Dale_, Jul 27 2022 *)
%o (Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [2..4300] | IsSemiprime(n) and IsSemiprime(n^2-7) and IsSemiprime(n^2+7) ]; // _Klaus Brockhaus_, Feb 25 2010
%Y Cf. A001358, A173082, A173083, A173084, A173085, A173086.
%K nonn
%O 1,1
%A _Vladimir Joseph Stephan Orlovsky_, Feb 09 2010
%E Edited by _Klaus Brockhaus_ and _N. J. A. Sloane_, Feb 25 2010