login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that n, n^2 - 5, and n^2 + 5 are semiprime.
3

%I #10 Aug 29 2021 11:04:33

%S 26,62,86,118,134,566,706,982,1198,1322,1346,1678,1706,1822,2386,2402,

%T 2498,2654,2966,3086,3142,3158,3326,3662,4222,4874,5158,5354,5774,

%U 6602,6638,6746,6998,7142,7586,7646,7834,8006,8482,8486,8846,9134,9406,10558

%N Numbers n such that n, n^2 - 5, and n^2 + 5 are semiprime.

%C 26^2-5=671 -> 11*61, 26^2+5=681 -> 3*227,..

%H Charles R Greathouse IV, <a href="/A173085/b173085.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) >> n log n. - _Charles R Greathouse IV_, Sep 14 2015

%t f[n_]:=Last/@FactorInteger[n]=={1,1}||Last/@FactorInteger[n]=={2}; lst={};Do[If[f[n], a=n^2-5;b=n^2+5;If[f[a]&&f[b],AppendTo[lst,n]]],{n,9!}];lst

%t Select[Range[12000],PrimeOmega[#]==PrimeOmega[#^2-5] == PrimeOmega[ #^2+5] == 2&] (* _Harvey P. Dale_, Aug 29 2021 *)

%o (PARI) issemi(n)=bigomega(n)==2

%o is(n)=if(n%2, isprime((n^2-5)\2) && isprime((n^2+5)\2) && issemi(n), isprime(n/2) && issemi(n^2-5) && issemi(n^2+5)) \\ _Charles R Greathouse IV_, Sep 14 2015

%Y Cf. A001358, A173082, A173083, A173084.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 09 2010

%E Edited by _Charles R Greathouse IV_, Apr 06 2010