login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173062
Primes of the form 2^r * 13^s - 1.
4
3, 7, 31, 103, 127, 337, 1663, 5407, 8191, 131071, 346111, 524287, 2970343, 3655807, 22151167, 109051903, 617831551, 1631461441, 2007952543, 2147483647, 32127240703, 194664464383, 275716983697, 958348132351, 1357375919743, 1670616516607, 49834102882303, 57349132609183
OFFSET
1,1
COMMENTS
s = 0 is "trivial" case of Mersenne primes: 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...
Mersenne prime exponents r: 2, 3, 5, 7, 13, 17, 19, 31, ...
Necessarily r odd as for r = 2*k and p a prime of form 6*n+1: 2^(2*k) * p^j - 1 a multiple of 3.
Proof by induction with 2^2 * p^1 - 1 = 4*(6*n+1) - 1 = 3*(8*n+1), 2^2(k+1) * p^j - 1 = 4* (2^k * p^j - 1) + 3.
No prime in case i = j = k (k>1) as a^k - 1 has divisor a - 1.
REFERENCES
Peter Bundschuh: Einfuehrung in die Zahlentheorie, Springer-Verlag GmbH Berlin, 2002
Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications, 2005
Paulo Ribenboim, Wilfrid Keller, Joerg Richstein: Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006
LINKS
EXAMPLE
2^2*13^0 - 1 = 3 = prime(2) => a(1).
2^3*13^1 - 1 = 103 = prime(27) => a(4).
2^7*13^9 - 1 = 1357375919743 = prime(50467169414) => a(25).
list of (r,s) pairs: (2,0), (3,0), (5,0), (3,1), (7,0), (1,2), (7,1), (5,2), (13,0), (17,0), (11,2), (19,0), (3,5), (7,4), (17,2), (23,1), (7,6), (1,8), (5,7), (31,0), (9,7), (19,5), (1,10), (25,4), (7,9), (11,8), (27,5), (5,11), (25,6), (19,8), (13,10), (3,13), (29,7), (5,14), (39,5), (15,13), (5,16), ...
PROG
(PARI) lista(nn) = {my(q=1/2, p, w=List([])); for(r=0, logint(nn, 2), q=2*q; p=q/13; for(s=0, logint(nn\q, 13), p=13*p; if(ispseudoprime(p-1), listput(w, p-1)))); Set(w); } \\ Jinyuan Wang, Feb 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 09 2010
EXTENSIONS
a(26)-a(28) from Jinyuan Wang, Feb 23 2020
STATUS
approved