login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173051 Partial sums of A050288. 0

%I

%S 10123457689,20246923478,30370389375,40493875054,50617360823,

%T 60740857680,70864405549,80987954228,91111523175,101235101824

%N Partial sums of A050288.

%C Partial sums of (base 10) Pandigital primes. Note that almost all primes are pandigital. a(59) is (after the first value) the first prime in this sequence. What is the smallest pandigital prime partial sum of (base 10) pandigital primes? In other bases?

%F a(n) = SUM[i=1..n] A050288(i) = SUM[i=1..n] {p is prime and p, base 10, has all 10 digits in its decimal representation, digits may appear multiple times}.

%e The least prime after a(1) is a(59) = 10123457689 + 10123465789 + 10123465897 + 10123485679 + 10123485769 + 10123496857 + 10123547869 + 10123548679 + 10123568947 + 10123578649 + 10123586947 + 10123598467 + 10123654789 + 10123684759 + 10123685749 + 10123694857 + 10123746859 + 10123784569 + 10123846597 + 10123849657 + 10123854679 + 10123876549 + 10123945687 + 10123956487 + 10123965847 + 10123984657 + 10124356789 + 10124358697 + 10124365879 + 10124365987 + 10124369587 + 10124378569 + 10124385967 + 10124389567 + 10124395867 + 10124398657 + 10124536789 + 10124538769 + 10124563789 + 10124563879 + 10124563987 + 10124568793 + 10124576893 + 10124578693 + 10124579863 + 10124583967 + 10124586397 + 10124589637 + 10124593867 + 10124596873 + 10124597683 + 10124635879 + 10124635897 + 10124638759 + 10124659873 + 10124673859 + 10124678953 + 10124683759 + 10124685379 = 597325496783 is prime.

%Y Cf. A000040, A050288, A050290.

%K base,easy,nonn

%O 1,1

%A _Jonathan Vos Post_, Feb 08 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 08:37 EDT 2020. Contains 334587 sequences. (Running on oeis4.)