login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173019 a(n) is the value of row n in triangle A083093 seen as ternary number. 4
1, 4, 16, 28, 112, 448, 784, 3136, 12301, 19684, 78736, 314944, 551152, 2204608, 8818432, 15432256, 61729024, 242132884, 387459856, 1549839424, 6199180549, 10848875968, 43395503872, 173577055372, 303766932781, 1215067731124 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Previous name was "Pascal's Triangle mod 3 converted to decimal."

If 2|a(n), then 4|a(n).

If 8|a(n), then 16|a(n).

If a(n)=4*a(n-1), then 3 does not divide n.

The first few odd values for a(n) are a(0)=1, a(8)=12301, a(20)=6199180549, a(24)=303766932781.

It appears that, as the terms of A001317 (analogous to this sequence, using binary instead of ternary) can be uniquely represented as products of Fermat numbers, the terms of this sequence can be represented as products from a nontrivial set of numbers. - Thomas Anton, Oct 27 2018

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.

FORMULA

a(3^n) = 3^(3^n) + 1.

a(3^n) = (8*a((3^n)-1) + 12)/5. [5*a(3^n) = 1200...0012 (base 3), 8*a((3^n)-1) = (22)(1212...2121) = 11222...2202 (base 3).]

For n > 0, a((3^n)+1) = 4*a(3^n) and a((3^n)+2) = 4*a((3^n)+1).

a(n) = Sum_{k=0..n} A083093(n,k) * 3^k. - Reinhard Zumkeller, Jul 11 2013

EXAMPLE

a(9) = 3^(3^2) + 1 = 19684;

a(8) = (5*19684 - 12)/8 = 12301;

a(10) = 4*19684 = 78736.

MATHEMATICA

FromDigits[#, 3] & /@ Table[Mod[Binomial[n, k], 3], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Oct 31 2018 *)

PROG

(Haskell)

a173019 = foldr (\t v -> 3 * v + t) 0 . map toInteger . a083093_row

-- Reinhard Zumkeller, Jul 11 2013

(PARI) a(n) = my(v = vector(n+1, k, binomial(n, k-1))); fromdigits(apply(x->x % 3, v), 3); \\ Michel Marcus, Nov 21 2018

CROSSREFS

Cf. A006940 (takes these values and converts them to decimal notation).

Cf. A001317, A007089, A006943, A083093.

Sequence in context: A256534 A352205 A227434 * A031003 A324784 A046001

Adjacent sequences:  A173016 A173017 A173018 * A173020 A173021 A173022

KEYWORD

base,easy,nonn

AUTHOR

Michael Thaler (michael_thaler(AT)brown.edu), Nov 07 2010

EXTENSIONS

a(13) and a(19) corrected and name clarified by Tom Edgar, Oct 11 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:31 EDT 2022. Contains 353826 sequences. (Running on oeis4.)