login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173019
a(n) is the value of row n in triangle A083093 seen as ternary number.
4
1, 4, 16, 28, 112, 448, 784, 3136, 12301, 19684, 78736, 314944, 551152, 2204608, 8818432, 15432256, 61729024, 242132884, 387459856, 1549839424, 6199180549, 10848875968, 43395503872, 173577055372, 303766932781, 1215067731124
OFFSET
0,2
COMMENTS
Previous name was "Pascal's Triangle mod 3 converted to decimal."
If 2|a(n), then 4|a(n).
If 8|a(n), then 16|a(n).
If a(n)=4*a(n-1), then 3 does not divide n.
The first few odd values for a(n) are a(0)=1, a(8)=12301, a(20)=6199180549, a(24)=303766932781.
It appears that, as the terms of A001317 (analogous to this sequence, using binary instead of ternary) can be uniquely represented as products of Fermat numbers, the terms of this sequence can be represented as products from a nontrivial set of numbers. - Thomas Anton, Oct 27 2018
LINKS
P. Mathonet, M. Rigo, M. Stipulanti and N. Zénaïdi, On digital sequences associated with Pascal's triangle, arXiv:2201.06636 [math.NT], 2022.
FORMULA
a(3^n) = 3^(3^n) + 1.
a(3^n) = (8*a((3^n)-1) + 12)/5. [5*a(3^n) = 1200...0012 (base 3), 8*a((3^n)-1) = (22)(1212...2121) = 11222...2202 (base 3).]
For n > 0, a((3^n)+1) = 4*a(3^n) and a((3^n)+2) = 4*a((3^n)+1).
a(n) = Sum_{k=0..n} A083093(n,k) * 3^k. - Reinhard Zumkeller, Jul 11 2013
EXAMPLE
a(9) = 3^(3^2) + 1 = 19684;
a(8) = (5*19684 - 12)/8 = 12301;
a(10) = 4*19684 = 78736.
MATHEMATICA
FromDigits[#, 3] & /@ Table[Mod[Binomial[n, k], 3], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Oct 31 2018 *)
PROG
(Haskell)
a173019 = foldr (\t v -> 3 * v + t) 0 . map toInteger . a083093_row
-- Reinhard Zumkeller, Jul 11 2013
(PARI) a(n) = my(v = vector(n+1, k, binomial(n, k-1))); fromdigits(apply(x->x % 3, v), 3); \\ Michel Marcus, Nov 21 2018
CROSSREFS
Cf. A006940 (takes these values and converts them to decimal notation).
Sequence in context: A352205 A364582 A227434 * A366814 A031003 A324784
KEYWORD
base,easy,nonn
AUTHOR
Michael Thaler (michael_thaler(AT)brown.edu), Nov 07 2010
EXTENSIONS
a(13) and a(19) corrected and name clarified by Tom Edgar, Oct 11 2015
STATUS
approved