OFFSET
1,1
COMMENTS
The subsequence of prime partial sums of near-repdigit primes begins 113, 523, 14143. What is the smallest near-repdigit prime partial sums of near-repdigit primes?
FORMULA
a(n) = SUM[i=1..n] A056710 = SUM[i=1..n] {primes in whose base 10 representation all digits are equal except for an end-digit}.
EXAMPLE
a(3) = 113 + 199 + 211 = 523 is prime. a(20) = 113 + 199 + 211 + 223 + 227 + 229 + 233 + 277 + 311 + 331 + 337 + 433 + 443 + 449 + 499 + 557 + 577 + 599 + 661 + 677.
MATHEMATICA
nrdQ[n_]:=Module[{idn=IntegerDigits[n], a, b}, a=First[idn]; b=Last[idn]; a!=b &&Union[idn]==Sort[{a, b}]]; Accumulate[Select[Prime[Range[26, 700]], nrdQ]] (* Harvey P. Dale, Apr 07 2013 *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 06 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Apr 07 2013
STATUS
approved