login
A172983
Partial sums of near-repdigit primes A056710.
0
113, 312, 523, 746, 973, 1202, 1435, 1712, 2023, 2354, 2691, 3124, 3567, 4016, 4515, 5072, 5649, 6248, 6909, 7586, 8319, 9092, 9903, 10780, 11661, 12544, 13431, 14342, 15319, 16310, 17307, 18424, 20201, 22200, 24311, 26532, 28865, 31642, 34641, 37972, 42083
OFFSET
1,1
COMMENTS
The subsequence of prime partial sums of near-repdigit primes begins 113, 523, 14143. What is the smallest near-repdigit prime partial sums of near-repdigit primes?
FORMULA
a(n) = SUM[i=1..n] A056710 = SUM[i=1..n] {primes in whose base 10 representation all digits are equal except for an end-digit}.
EXAMPLE
a(3) = 113 + 199 + 211 = 523 is prime. a(20) = 113 + 199 + 211 + 223 + 227 + 229 + 233 + 277 + 311 + 331 + 337 + 433 + 443 + 449 + 499 + 557 + 577 + 599 + 661 + 677.
MATHEMATICA
nrdQ[n_]:=Module[{idn=IntegerDigits[n], a, b}, a=First[idn]; b=Last[idn]; a!=b &&Union[idn]==Sort[{a, b}]]; Accumulate[Select[Prime[Range[26, 700]], nrdQ]] (* Harvey P. Dale, Apr 07 2013 *)
CROSSREFS
Sequence in context: A031932 A216310 A211445 * A358034 A069794 A033249
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 06 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Apr 07 2013
STATUS
approved