login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172710
Number of 7*n X 2*n 0..2 arrays with row sums 2 and column sums 7.
1
393, 492872166072, 737005538936597762145600, 117847210656873992022720603629873856000, 620630259068078856134953474839665823595181960916480000
OFFSET
1,1
LINKS
FORMULA
a(n) = ((2n)!(7n)!/(7!)^(2n)) Sum_{i=0..2n} Sum_{j=0..2n-i} Sum_{k=0..2n-i-j} (21^j*105^(2n-i-j)*(6i+4j+2k+2n)!/(i!j!k!(2n-i-j-k)!(n+2j+k+3i)!*2^(n+2j+k+3i))). - Shanzhen Gao, Feb 24 2010
a(n) ~ sqrt(Pi) * 7^(12*n + 1/2) * n^(14*n + 1/2) / (2^(n-1) * 3^(4*n) * 5^(2*n) * exp(14*n-3)). - Vaclav Kotesovec, Oct 22 2023
MATHEMATICA
Table[(2*n)!*(7*n)!/(7!)^(2*n) * Sum[Sum[Sum[(21^j*105^(2*n-i-j)*(6*i+4*j+2*k+2*n)! / (i!*j!*k!*(2*n-i-j-k)!*(n+2*j+k+3*i)! * 2^(n+2*j+k+3*i))), {k, 0, 2*n-i-j}], {j, 0, 2*n-i}], {i, 0, 2*n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 22 2023 *)
PROG
(PARI) a(n) = ((2*n)!*(7*n)!/(7!)^(2*n))*sum(i=0, 2*n, sum(j=0, 2*n-i, sum(k=0, 2*n-i-j, (21^j*105^(2*n-i-j)*(6*i+4*j+2*k+2*n)!/(i!*j!*k!*(2*n-i-j-k)!*(n+2*j+k+3*i)!*2^(n+2*j+k+3*i)))))); \\ Michel Marcus, Jan 17 2018
CROSSREFS
Sequence in context: A172872 A172903 A172931 * A236234 A252691 A051986
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved