OFFSET
1,1
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..14
FORMULA
a(n) = ((2n)!(7n)!/(7!)^(2n)) Sum_{i=0..2n} Sum_{j=0..2n-i} Sum_{k=0..2n-i-j} (21^j*105^(2n-i-j)*(6i+4j+2k+2n)!/(i!j!k!(2n-i-j-k)!(n+2j+k+3i)!*2^(n+2j+k+3i))). - Shanzhen Gao, Feb 24 2010
a(n) ~ sqrt(Pi) * 7^(12*n + 1/2) * n^(14*n + 1/2) / (2^(n-1) * 3^(4*n) * 5^(2*n) * exp(14*n-3)). - Vaclav Kotesovec, Oct 22 2023
MATHEMATICA
Table[(2*n)!*(7*n)!/(7!)^(2*n) * Sum[Sum[Sum[(21^j*105^(2*n-i-j)*(6*i+4*j+2*k+2*n)! / (i!*j!*k!*(2*n-i-j-k)!*(n+2*j+k+3*i)! * 2^(n+2*j+k+3*i))), {k, 0, 2*n-i-j}], {j, 0, 2*n-i}], {i, 0, 2*n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 22 2023 *)
PROG
(PARI) a(n) = ((2*n)!*(7*n)!/(7!)^(2*n))*sum(i=0, 2*n, sum(j=0, 2*n-i, sum(k=0, 2*n-i-j, (21^j*105^(2*n-i-j)*(6*i+4*j+2*k+2*n)!/(i!*j!*k!*(2*n-i-j-k)!*(n+2*j+k+3*i)!*2^(n+2*j+k+3*i)))))); \\ Michel Marcus, Jan 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved