OFFSET
1,2
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..24
FORMULA
a(n) = 24^(-3n)*(3n)!(4n)!*Sum_{i=0..2n} Sum_{j=0..min(3n-i, 4n-2i)} Sum_{k=0..min(3n-j-i, 4n-2i-j)} ((-1)^j*3^i*6^j*8^k*(12n-4i-2j-3k)!/((3n-i-j-k)!i!j!k!(4n-2i-j-k)!*6^(4n-2i-j-k))). - Shanzhen Gao, Feb 19 2010
a(n) ~ sqrt(Pi) * 2^(11*n + 3/2) * 3^(5*n + 1/2) * n^(12*n + 1/2) / exp(12*n + 3). - Vaclav Kotesovec, Oct 22 2023
MATHEMATICA
Table[24^(-3*n)*(3*n)!*(4*n)! * Sum[Sum[Sum[((-1)^j*3^i*6^j*8^k*(12*n-4*i-2*j-3*k)! / ((3*n-i-j-k)!*i!*j!*k!*(4*n-2*i-j-k)!*6^(4*n-2*i-j-k))), {k, 0, Min[3*n-j-i, 4*n-2*i-j]}], {j, 0, Min[3*n-i, 4*n-2*i]}], {i, 0, 2*n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 22 2023 *)
PROG
(PARI) a(n) = 24^(-3*n)*(3*n)!*(4*n)!*sum(i=0, 2*n, sum(j=0, min(3*n-i, 4*n-2*i), sum(k=0, min(3*n-j-i, 4*n-2*i-j), ((-1)^j*3^i*6^j*8^k*(12*n-4*i-2*j-3*k)!/((3*n-i-j-k)!*i!*j!*k!*(4*n-2*i-j-k)!*6^(4*n-2*i-j-k)))))); \\ Michel Marcus, Jan 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
STATUS
approved