login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172556
Number of 2*n X 6 binary arrays with row sums 3 and column sums n.
3
1, 20, 1860, 297200, 60871300, 14367744720, 3718394156400, 1026608414145600, 297348703692826500, 89365729945562642000, 27658131940039664137360, 8766913970029589057611200, 2834492178580299130305958000, 931874436031756882451601080000, 310768686646948895430510472680000
OFFSET
0,2
LINKS
Christoph Koutschan, Table of n, a(n) for n = 0..387 (terms n=1..49 from R. H. Hardin)
Robert Dougherty-Bliss, Christoph Koutschan, Natalya Ter-Saakov, and Doron Zeilberger, The (Symbolic and Numeric) Computational Challenges of Counting 0-1 Balanced Matrices, arXiv:2410.07435 [math.CO], 2024.
FORMULA
(n+3) * (n+4)^5 * (33*n^2 + 176*n + 236) * a(n+4) = 2 * (n+3) * (2*n + 7) * (3201*n^6 + 61886*n^5 + 497179*n^4 + 2124170*n^3 + 5089654*n^2 + 6484024*n + 3431096) * a(n+3) + 16 * (2*n + 5) * (2*n + 7) * (2772*n^6 + 48048*n^5 + 344379*n^4 + 1307394*n^3 + 2775099*n^2 + 3125336*n + 1460132) * a(n+2) - 128 * (n+2) * (2*n + 3) * (2*n + 5) * (2*n + 7) * (7491*n^4 + 84898*n^3 + 351364*n^2 + 628997*n + 414370) * a(n+1) + 51200 * (n+1) * (n+2) * (2*n + 1) * (2*n + 3) * (2*n + 5) * (2*n + 7) * (33*n^2 + 242*n + 445) * a(n). - Doron Zeilberger and Christoph Koutschan, Oct 13 2024
CROSSREFS
Column k=3 of A376935.
Sequence in context: A177297 A014606 A330196 * A246619 A222973 A267575
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 06 2010
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Oct 12 2024
STATUS
approved