login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172524
Partial sums of Iccanobif numbers A001129.
0
0, 1, 2, 4, 7, 12, 20, 33, 72, 196, 710, 1546, 2599, 6738, 19553, 80688, 185625, 978142, 2432840, 12112678, 29466988, 39202128, 40962878, 41948928, 42570288, 42684103, 43265540, 44518036, 52194742, 65214030, 159581828, 337649208
OFFSET
0,3
COMMENTS
The only primes in this sequence are: 2, 7 and 19553. The squares in this sequence begin: 0, 1, 4, 196.
FORMULA
a(n) = SUM[i=0..n] A001129(i) = SUM[i=0..n] {a(0) = 0, a(1) = 1, a(i+2) = R(a(i)) + R(a(i+1))} = SUM[i=0..n] A001129(i) = SUM[i=1..n] {a(0) = 0, a(1) = 1, a(i+2) = A004086(a(i)) + A004086(a(i+1))}.
EXAMPLE
a(14) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 = 19553 is prime. a(31) = 0 + 1 + 1 + 2 + 3 + 5 + 8 + 13 + 39 + 124 + 514 + 836 + 1053 + 4139 + 12815 + 61135 + 104937 + 792517 + 1454698 + 9679838 + 17354310 + 9735140 + 1760750 + 986050 + 621360 + 113815 + 581437 + 1252496 + 7676706 + 13019288 + 94367798 + 178067380.
MATHEMATICA
nxt[{a_, b_}]:={b, Total[FromDigits/@Reverse/@IntegerDigits[{a, b}]]}; Accumulate[ Transpose[NestList[nxt, {0, 1}, 40]][[1]]] (* Harvey P. Dale, Apr 04 2015 *)
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 06 2010
STATUS
approved