OFFSET
1,1
COMMENTS
Sequence of denominators: 10, 25, 1000, 5000, 20000, 15625, 10000000, 50000000, ... Conjecture: this sequence is not equal to the sequence A078257.
From Michael S. Branicky, Nov 30 2022: (Start)
The conjecture is false: the denominators here are the same as in A078257.
Proof. Let Cn denote the concatenation (1)(2)(3)...(n-1)(n) and en its number of decimal digits. The unreduced numerator and denominator for a(n) are Cn and 10^en, respectively. For A078257(n), they are Cn*(10^en + 1) and 10^en. Since (10^en + 1) is never divisible by 2 or 5, no reductions can be made in the denominator of A078257(n) beyond those allowed by the unreduced numerator of a(n). (End)
EXAMPLE
a(6) = 1929001929; 1929001929/15625 = 123456.123456.
PROG
(Python)
from itertools import count, islice
def agen(): # generator of terms
k, den, pow = 0, 1, 0
for n in count(1):
sn = str(n)
k = k*10**len(sn) + n
den *= 10**len(sn)
pow += len(sn)
nr, c2, c5 = k*(den+1), pow, pow
while nr%2 == 0 and c2 > 0: nr //= 2; c2 -= 1
while nr%5 == 0 and c5 > 0: nr //= 5; c5 -= 1
yield nr
print(list(islice(agen(), 19))) # Michael S. Branicky, Nov 30 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Feb 05 2010
EXTENSIONS
a(9) and beyond from Michael S. Branicky, Nov 30 2022
STATUS
approved