The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172506 a(n) = numerator of fraction a/b, where gcd(a, b) = 1, whose decimal representation has the form (1)(2)(3)...(n-1)(n).(1)(2)(3)...(n-1)(n). 1
 11, 303, 123123, 6170617, 246902469, 1929001929, 12345671234567, 617283906172839, 123456789123456789, 123456789101234567891, 12345678910111234567891011, 15432098637639015432098637639, 1234567891011121312345678910111213, 6172839455055606570617283945505560657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence of denominators: 10, 25, 1000, 5000, 20000, 15625, 10000000, 50000000, ... Conjecture: this sequence is not equal to the sequence A078257. From Michael S. Branicky, Nov 30 2022: (Start) The conjecture is false: the denominators here are the same as in A078257. Proof. Let Cn denote the concatenation (1)(2)(3)...(n-1)(n) and en its number of decimal digits. The unreduced numerator and denominator for a(n) are Cn and 10^en, respectively. For A078527(n), they are Cn*(10^en + 1) and 10^en. Since (10^en + 1) is never divisible by 2 or 5, no reductions can be made in the denominator of A078527(n) beyond those allowed by the unreduced numerator of a(n). (End) LINKS Table of n, a(n) for n=1..14. EXAMPLE a(6) = 1929001929; 1929001929/15625 = 123456.123456. PROG (Python) from itertools import count, islice def agen(): # generator of terms k, den, pow = 0, 1, 0 for n in count(1): sn = str(n) k = k*10**len(sn) + n den *= 10**len(sn) pow += len(sn) nr, c2, c5 = k*(den+1), pow, pow while nr%2 == 0 and c2 > 0: nr //= 2; c2 -= 1 while nr%5 == 0 and c5 > 0: nr //= 5; c5 -= 1 yield nr print(list(islice(agen(), 19))) # Michael S. Branicky, Nov 30 2022 CROSSREFS Cf. A078257, A078258. Sequence in context: A012192 A012079 A180056 * A250551 A001280 A100445 Adjacent sequences: A172503 A172504 A172505 * A172507 A172508 A172509 KEYWORD nonn,base AUTHOR Jaroslav Krizek, Feb 05 2010 EXTENSIONS a(9) and beyond from Michael S. Branicky, Nov 30 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 19:28 EST 2023. Contains 367419 sequences. (Running on oeis4.)