login
a(n) = denominator of fraction a/b, where gcd(a, b) = 1, whose decimal representation has the form 0.(1)(2)(3)...(n-1)(n)... with period (1)(2)(3)...(n-1)(n).
4

%I #20 Mar 16 2020 11:58:03

%S 9,33,333,9999,33333,333333,9999999,11111111,111111111,99999999999,

%T 3333333333333,333333333333333,99999999999999999,3333333333333333333,

%U 333333333333333333333,99999999999999999999999

%N a(n) = denominator of fraction a/b, where gcd(a, b) = 1, whose decimal representation has the form 0.(1)(2)(3)...(n-1)(n)... with period (1)(2)(3)...(n-1)(n).

%C Numerators in A172496.

%e a(10) = 99999999999; 12345678910 / 99999999999 = 0.1234567891012345678910... (period 12345678910).

%o (Sage)

%o def A172498(n):

%o s = ''.join(str(i) for i in range(1, n+1))

%o f = Integer(s) / (10**len(s)-1)

%o return f.denominator()

%o [A172498(i) for i in range(1,15)]

%Y Cf. A172496 (numerators), A172499, A172505.

%K nonn,base

%O 1,1

%A _Jaroslav Krizek_, Feb 05 2010

%E Edited and extended by _D. S. McNeil_, Nov 27 2010