Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Apr 21 2021 17:29:16
%S 1,1,1,1,1,1,1,1,1,1,1,2,2,2,1,1,1,2,2,1,1,1,2,2,4,2,2,1,1,3,6,6,6,6,
%T 3,1,1,2,6,12,6,12,6,2,1,1,4,8,24,24,24,24,8,4,1,1,3,12,24,36,72,36,
%U 24,12,3,1,1,5,15,60,60,180,180,60,60,15,5,1,1,5,25,75,150,300,450,300,150,75,25,5,1
%N Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10), read by rows.
%H G. C. Greubel, <a href="/A172497/b172497.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k) = round( c(n)/(c(k)*c(n-k)) ) where c(n) = Product_{j=1..n} A029826(j+10).
%e The triangle begins as:
%e 1;
%e 1, 1;
%e 1, 1, 1;
%e 1, 1, 1, 1;
%e 1, 2, 2, 2, 1;
%e 1, 1, 2, 2, 1, 1;
%e 1, 2, 2, 4, 2, 2, 1;
%e 1, 3, 6, 6, 6, 6, 3, 1;
%e 1, 2, 6, 12, 6, 12, 6, 2, 1;
%e 1, 4, 8, 24, 24, 24, 24, 8, 4, 1;
%e 1, 3, 12, 24, 36, 72, 36, 24, 12, 3, 1;
%t b:= Drop[CoefficientList[Series[1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10), {x,0,100}], x], 10];
%t c[n_]:= Product[b[[j]], {j,n}];
%t T[n_, k_]:= Round[c[n]/(c[k]*c[n-k])];
%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Apr 20 2021 *)
%o (Magma)
%o R<x>:= PowerSeriesRing(Integers(), 100);
%o b:= Coefficients(R!( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ));
%o c:= func< n | (&*[b[j]: j in [10..n+10]]) >;
%o T:= func< n,k | Round(c(n)/(c(k)*c(n-k))) >;
%o [T(n,k): k in [0..n], n in [1..12]]; // _G. C. Greubel_, Apr 20 2021
%o (Sage)
%o @CachedFunction
%o def A029826_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/(1+x-x^3-x^4-x^5-x^6-x^7+x^9+x^10) ).list()
%o b=A029826_list(130)
%o def c(n): return product(b[j] for j in (9..n+9))
%o def T(n,k): return round(c(n)/(c(k)*c(n-k)))
%o flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 20 2021
%Y Cf. A029826.
%K nonn,tabl,easy,less
%O 0,12
%A _Roger L. Bagula_, Feb 05 2010
%E Definition corrected and edited by _G. C. Greubel_, Apr 20 2021