login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of fraction a/b, where gcd(a, b) = 1, whose decimal representation has the form 0.(1)(2)(3)...(n-1)(n)... with period (1)(2)(3)...(n-1)(n).
2

%I #11 Mar 31 2022 12:52:13

%S 1,4,41,1234,4115,41152,1234567,1371742,13717421,12345678910,

%T 411522630337,41152263033704,12345678910111213,411522630337040438,

%U 41152263033704043805,12345678910111213141516,137174210112346812683513,13717421011234681268351302

%N a(n) = numerator of fraction a/b, where gcd(a, b) = 1, whose decimal representation has the form 0.(1)(2)(3)...(n-1)(n)... with period (1)(2)(3)...(n-1)(n).

%C Denominators in A172498.

%H Alois P. Heinz, <a href="/A172496/b172496.txt">Table of n, a(n) for n = 1..369</a>

%e a(10) = 12345678910; 12345678910/99999999999 = 0.1234567891012345678910... (period 12345678910).

%p a:= n-> (m-> numer(m*sum(10^(-i*length(m)), i=1..infinity))

%p )(parse(cat(seq(i, i=1..n)))):

%p seq(a(n), n=1..19); # _Alois P. Heinz_, Mar 31 2022

%K nonn,base

%O 1,2

%A _Jaroslav Krizek_, Feb 05 2010

%E More terms from _Alois P. Heinz_, Mar 31 2022