Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 20 2018 14:20:20
%S 1,20,84,200,403,720,1180,1808,2631,3676,4970,6540,8413,10616,13176,
%T 16120,19475,23268,27526,32276,37545,43360,49748,56736,64351,72620,
%U 81570,91228,101621,112776,124720,137480,151083,165556,180926,197220
%N Number of ways to place 3 nonattacking zebras on a 3 X n board.
%C Zebra is a (fairy chess) leaper [2,3].
%H Vincenzo Librandi, <a href="/A172221/b172221.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens and kings on boards of various sizes</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ZebraGraph.html.html">Zebra Graph</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Zebra_(chess)">Zebra (chess)</a>
%F a(n) = (9*n^3 - 21*n^2 + 50*n - 48)/2, n>=6.
%F G.f.: x*(2*x^8-4*x^7+2*x^6-8*x^5+28*x^4-20*x^3+10*x^2+16*x+1)/(x-1)^4. - _Vaclav Kotesovec_, Mar 25 2010
%t CoefficientList[Series[(2 x^8 - 4 x^7 + 2 x^6 - 8 x^5 + 28 x^4 - 20 x^3 + 10 x^2 + 16 x + 1) / (x - 1)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 28 2013 *)
%Y Cf. A172138, A061989.
%K nonn,easy
%O 1,2
%A _Vaclav Kotesovec_, Jan 29 2010
%E More terms from _Vincenzo Librandi_, May 28 2013