login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172216
Smallest k such that sum of digits of prime(n)^k is prime.
1
1, 1, 1, 1, 1, 3, 2, 5, 1, 1, 7, 2, 1, 1, 1, 2, 5, 1, 1, 6, 2, 2, 1, 1, 4, 1, 4, 2, 2, 1, 2, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 5, 6, 1, 4, 4, 1, 1, 2, 2, 1, 1, 4, 3, 1, 1, 1, 1, 1, 8, 2, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 4, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 8, 3, 2, 6, 2, 3, 6, 2, 1, 10, 8, 1
OFFSET
1,6
COMMENTS
For all n, prime(n)^0 = 1 has nonprime sum of digits 1.
a(n) = 1 iff prime(n) is in A046704, an additive prime. a(n) = 1 iff n is in A075177.
EXAMPLE
prime(1) = 2; 2^1 = 2 has prime sum of digits 2. Hence a(1) = 1.
prime(6) = 13; 13^1 = 13 has nonprime sum of digits 4; 13^2 = 169 has nonprime sum of digits 16; 13^3 = 2197 has prime sum of digits 19. Hence a(6) = 3.
MATHEMATICA
sdp[n_]:=Module[{k=1}, While[!PrimeQ[Total[IntegerDigits[Prime[n]^k]]], k++]; k]; Array[sdp, 110] (* Harvey P. Dale, Apr 13 2014 *)
PROG
(Magma) S:=[]; for n in [1..105] do j:=1; while not IsPrime(&+Intseq(NthPrime(n)^j)) do j+:=1; end while; Append(~S, j); end for; S;
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Klaus Brockhaus, Jan 29 2010
STATUS
approved